Product Description

Heavy load worm drive slewing gear reduction for mounted truck crane drilling rig,excavator  and other rotation slewing drive

Coresun Drive slewing drives worm gear can be widely used for grapple machines, Aerial platform, forklift ,mobile crane ,Drilling Rig ,solar tracking system, wind turbine and satellite dish.Those products are designed for long life, working in hard environmental conditions.Hourglass worm shaft is used in each sized slewing drive for better efficiency, more torque and smoother rotation by multiple tooth contact with the slewing rings

Slewing drives are perfect for situations requiring both load-holding and rotational torque from the same gearbox.Ttypical applications include solar trackers, wind turbines, satellite and radar dishes, truck cranes, man lifts, utility equipment, hydraulic equipment attachments, oil tool equipment, tire handlers, digger derricks, and automotive lifts.

This increased tooth engagement results in greater strength, efficiency and durability.The slewing drive uses standard worm technology in which the worm on the horizontal The speed ratio of the shaft depends on the relationship between the number of threads on the worm and the number of teeth in the worm gear or gear.The specifications of the drive and gear depend on the material of the gear. However, most of the drives and gears typically used consist of steel and phosphor bronze. According to a wide range of tests,chilled nickel-phosphorus bronze ranks first in terms of Wear resistance and deformability

WH series for heavy duty rotary drive.The surface adopts QPQ treatment process, which can not only increase the surface hardness of the product, but also ensure its wear resistance and corrosion resistance.

On the basis of the original product, 8 bolts are added at both ends of the worm to effectively prevent the worm from being pulled out due to the excessive axial impact force.

Different from the traditional 42CrMo worm material, carbon steel is added to ensure that the worm can bear the input torque of 600-1000N. M

WH14 slewing drive rotary table is widely used in aerial work platform, roadheader, rotating equipment and automatic assembly line.

1, What are the differentiates between CHINAMFG with other supplier?
Profession and reliability.
Our advantages are multiple available technologies, strong quality assurance, and good at project & supply chain management.

2, Is there a cost for CHINAMFG service?
There is no additional cost above the product and tooling price except third party service.

3, Will I be able to visit the supplier myself?
First, all of our supply partner has undergone a series of screening and audit process, we can provide complete audit report to you.
Secondly, if you want to perform your own independent supplier audit procedure, our representatives can accompany and assistant with you to achieve it.

4, How to deal with the quality problem?
A. With our partners we perfom APQP at early stage in each project.
B. Our factory must fully understand the quality concerns from customers and implement product & process quality requirements.
C. Our quality professionals who perfom patrol inspection in our factories.
We perform final inspectors before the goods are packed.

5, Can you take responsibility for me?
Of course, I’m happy to help you! But I just take responsitility fo my products.
Please offer a test report.
If it was our fault, absolutely we can make a compensation for you, my friend!

6, Do you like to serve the client only with small order?
We enjoy to grow up together with all our clients whatever big or small.
Your will become bigger and bigger to be with us.

Coresun Drive Slewing Bearing Production Photo



Coresun Drive testing reports for WH products
For CHINAMFG Drive’s slewing drive worm bearing, raw material testing, process testing, finished product testing should be made for ensuring the 100% quality production.

CONTACT US

It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Holding Torque: 48kn.M
Tilting Moment Torque: 72kn.M
Output Torque: 6.8kn.M
Output Speed: 2.1rpm
Gear Ratio: 84:1
IP Class: IP65

Customization:
Available

|

Are there innovations or advancements in slewing ring technology that have emerged recently?

Yes, there have been several innovations and advancements in slewing ring technology that have emerged recently. These advancements aim to improve the performance, efficiency, durability, and versatility of slewing rings in various applications. Here’s a detailed explanation of some recent innovations in slewing ring technology:

  • Lightweight Materials: Manufacturers are increasingly exploring the use of lightweight materials such as aluminum alloys or advanced composites in slewing ring construction. These materials offer high strength-to-weight ratios, reducing the overall weight of the slewing ring without compromising its load-bearing capacity. The adoption of lightweight materials contributes to energy savings, improved maneuverability, and reduced structural stress.
  • Enhanced Sealing and Protection: Slewing rings are being equipped with advanced sealing systems and protective coatings to enhance their resistance to environmental factors such as dust, moisture, and chemicals. These innovations help prevent contamination, reduce friction, and extend the lifespan of the slewing rings, especially in harsh operating conditions.
  • Integrated Bearings and Gear Technology: Some slewing rings now incorporate integrated bearing and gear technologies. This integration eliminates the need for separate bearings and gears, simplifying the design and reducing assembly time. It also improves load distribution and torque transmission, resulting in smoother operation, increased efficiency, and reduced maintenance requirements.
  • Improved Lubrication Systems: Lubrication systems for slewing rings have seen advancements to enhance lubricant distribution and retention. Centralized lubrication systems, automatic lubrication systems, or sealed-for-life designs are being implemented to ensure optimal lubrication and minimize maintenance intervals. These advancements contribute to lower friction, reduced wear, and improved efficiency.
  • Condition Monitoring and Predictive Maintenance: Slewing rings are being equipped with condition monitoring systems that utilize sensors and data analysis techniques. These systems monitor parameters such as temperature, vibration, and load to detect anomalies and predict potential failures. By enabling predictive maintenance, these advancements help optimize maintenance schedules, minimize downtime, and extend the operational life of slewing rings.
  • Smart and Connected Features: The integration of smart and connected features in slewing rings is becoming more prevalent. Slewing rings equipped with IoT capabilities can communicate data wirelessly, enabling remote monitoring, diagnostics, and control. This facilitates real-time performance analysis, allows for centralized management of multiple slewing rings, and supports the implementation of advanced automation and optimization strategies.
  • Improved Manufacturing Techniques: Advances in manufacturing technologies, such as precision machining, automated assembly, and advanced quality control methods, have contributed to the production of high-quality slewing rings. These techniques ensure tighter tolerances, improved surface finishes, and enhanced reliability. Additionally, computer-aided design (CAD) and simulation tools allow for better optimization of slewing ring designs, resulting in improved performance and efficiency.

These recent innovations and advancements in slewing ring technology have opened up new possibilities for various industries where slewing rings are utilized, including construction, mining, renewable energy, material handling, and aerospace. They offer improved performance, increased durability, enhanced functionality, and greater efficiency, enabling the optimization of rotating systems and supporting the development of advanced applications.

Are there innovations or advancements in slewing ring technology that have emerged recently?

Yes, there have been several innovations and advancements in slewing ring technology that have emerged recently. These advancements aim to improve the performance, efficiency, durability, and versatility of slewing rings in various applications. Here’s a detailed explanation of some recent innovations in slewing ring technology:

  • Lightweight Materials: Manufacturers are increasingly exploring the use of lightweight materials such as aluminum alloys or advanced composites in slewing ring construction. These materials offer high strength-to-weight ratios, reducing the overall weight of the slewing ring without compromising its load-bearing capacity. The adoption of lightweight materials contributes to energy savings, improved maneuverability, and reduced structural stress.
  • Enhanced Sealing and Protection: Slewing rings are being equipped with advanced sealing systems and protective coatings to enhance their resistance to environmental factors such as dust, moisture, and chemicals. These innovations help prevent contamination, reduce friction, and extend the lifespan of the slewing rings, especially in harsh operating conditions.
  • Integrated Bearings and Gear Technology: Some slewing rings now incorporate integrated bearing and gear technologies. This integration eliminates the need for separate bearings and gears, simplifying the design and reducing assembly time. It also improves load distribution and torque transmission, resulting in smoother operation, increased efficiency, and reduced maintenance requirements.
  • Improved Lubrication Systems: Lubrication systems for slewing rings have seen advancements to enhance lubricant distribution and retention. Centralized lubrication systems, automatic lubrication systems, or sealed-for-life designs are being implemented to ensure optimal lubrication and minimize maintenance intervals. These advancements contribute to lower friction, reduced wear, and improved efficiency.
  • Condition Monitoring and Predictive Maintenance: Slewing rings are being equipped with condition monitoring systems that utilize sensors and data analysis techniques. These systems monitor parameters such as temperature, vibration, and load to detect anomalies and predict potential failures. By enabling predictive maintenance, these advancements help optimize maintenance schedules, minimize downtime, and extend the operational life of slewing rings.
  • Smart and Connected Features: The integration of smart and connected features in slewing rings is becoming more prevalent. Slewing rings equipped with IoT capabilities can communicate data wirelessly, enabling remote monitoring, diagnostics, and control. This facilitates real-time performance analysis, allows for centralized management of multiple slewing rings, and supports the implementation of advanced automation and optimization strategies.
  • Improved Manufacturing Techniques: Advances in manufacturing technologies, such as precision machining, automated assembly, and advanced quality control methods, have contributed to the production of high-quality slewing rings. These techniques ensure tighter tolerances, improved surface finishes, and enhanced reliability. Additionally, computer-aided design (CAD) and simulation tools allow for better optimization of slewing ring designs, resulting in improved performance and efficiency.

These recent innovations and advancements in slewing ring technology have opened up new possibilities for various industries where slewing rings are utilized, including construction, mining, renewable energy, material handling, and aerospace. They offer improved performance, increased durability, enhanced functionality, and greater efficiency, enabling the optimization of rotating systems and supporting the development of advanced applications.

How do slewing rings contribute to the adaptability and versatility of rotating systems in various settings?

Slewing rings play a crucial role in enhancing the adaptability and versatility of rotating systems across various settings. Here’s a detailed explanation of how slewing rings contribute to the adaptability and versatility of rotating systems:

  • 360-Degree Rotation: Slewing rings enable 360-degree continuous rotation, allowing rotating systems to operate in any direction. This flexibility is especially valuable in applications such as cranes, excavators, and wind turbines, where unrestricted rotation is necessary to perform tasks efficiently and access multiple work zones without repositioning the entire system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant radial, axial, and moment loads. Their robust construction and large diameter enable them to support heavy equipment and loads, making them suitable for a wide range of applications, including construction machinery, material handling systems, and offshore platforms. The high load-bearing capacity of slewing rings contributes to the adaptability of rotating systems in demanding settings.
  • Compact Design: Slewing rings have a compact and space-saving design compared to alternative mechanisms for rotational movement. This compactness allows for the integration of slewing rings into systems where space is limited, such as compact construction machinery, industrial robots, and medical equipment. The compact design of slewing rings enhances the adaptability of rotating systems in confined or restricted environments.
  • Versatile Mounting Options: Slewing rings offer versatile mounting options, allowing them to be easily integrated into different types of rotating systems. They can be mounted using various methods, including bolted connections, gear or pinion arrangements, or hydraulic or electric drives. This versatility in mounting options enables slewing rings to adapt to the specific requirements and constraints of different applications and settings.
  • Support for Multiple Components: Slewing rings provide support for various components that are essential for rotating systems. For example, they can support booms, arms, or jibs in construction machinery, or act as a base for rotating platforms or turntables in manufacturing or entertainment industries. By providing a stable and reliable foundation, slewing rings enable the integration of multiple components, enhancing the versatility and adaptability of the overall system.
  • Customization and Specialized Designs: Slewing rings can be customized and designed to meet specific application requirements. Manufacturers can tailor slewing rings to accommodate specific load capacities, dimensions, mounting arrangements, sealing systems, or environmental conditions. This customization allows for the adaptation of slewing rings to diverse settings, ensuring optimal performance and functionality.
  • Integration with Control Systems: Slewing rings can be integrated with electronic or computer-controlled components, such as sensors, actuators, and control systems. This integration enables precise control, automation, and synchronization of rotating systems. By incorporating advanced control features, slewing rings can adapt to dynamic operating conditions, optimize performance, and support advanced functionalities, such as coordinated motion, precision positioning, or remote monitoring.

In summary, slewing rings contribute to the adaptability and versatility of rotating systems by enabling 360-degree rotation, providing high load-bearing capacity, offering a compact design, supporting versatile mounting options, accommodating multiple components, allowing customization, and facilitating integration with control systems. These characteristics make slewing rings suitable for a wide range of applications and settings, enhancing the versatility and adaptability of rotating systems in industries such as construction, manufacturing, transportation, renewable energy, and many others.

China supplier Renewable Energy Slew Drive Solar Tracking System Slew Drive Wea14  China supplier Renewable Energy Slew Drive Solar Tracking System Slew Drive Wea14
editor by CX 2024-04-17