Product Description

1. Product Description
 

Material 42CrMo or 50Mn
Delivery Time 15 Days
Transport By sea, by air, by railway, by express
Warranty Period 18 Months
Package Wooden Box
Payment T/T , Western Union, Paypal

2. Product show

3. Company profile

HangZhou King Slewing Bearing Technology Co., Ltd. is a specialized manufacturer and exporter for excavator and crane slewing bearings. The company occupies the workshop area of 6,000m2, offering a variety of models which can meet your various demands. We own a specialized team in R&D and manufacturing the slewing bearing for many years. We can make more than 1000 models of slewing bearings to match famous excavator and crane brands, such as , HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, LIE HERR, DAEWOO, JCB,CASE, SUMITOMO, KATO, etc.

We have strong production facilities and complete process for making slewing bearings, such as  CNC machines , vertical lathes, gear hobbing machines, gear shaping machines, hole drilling machines, quenching equipment, vertical grinding machines, turning machines, etc. We adhere to ISO9000 quality system management standards and strictly execute the mechanical standard of the domestic and international standards of the products.
Our products are supplied for the following brands:

4. Our slewing rings can match with more than 1000 excavator models. 

5. Excavator part numbers as below:
 

 

Excavator Slewing Ring Replacement 
Excavator model number Part number Excavator model number Part number
SY 130   J2C.4.3 SY 230C  
SY135 C    SY235C  
SY 200   SY 365C 13484728
SY210    SY 365C B22990057156
SY215C 11841739 SCC550  10942045
SY 230   SY850C  

 6. Our machine tools

7. Packaging by wooden box

8. Transportation way: By sea/ air/ rail/ road/ TNT/DHL/UPS/Fedex,ect. 

9. Contact information

Company: HangZhou King Slewing Bearing Technology Co.,Ltd
Address: CHINAMFG Xinzhan CHINAMFG Science and Technology Park, Xinzhan District, HangZhou, ZheJiang Province
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Short Delivery Time
Sealing Gland: Seal Rings
Rolling-Element Number: Single Row
Roller Type: Four Point Contact
Material: 50mn/42CrMo

Samples:
US$ 2000/Set
1 Set(Min.Order)

|

Customization:
Available

|

In what industries or scenarios are slewing rings commonly employed?

Slewing rings find extensive use in various industries and scenarios where controlled rotational movement and load-bearing capabilities are required. Here’s a detailed explanation of the industries and scenarios where slewing rings are commonly employed:

  • Construction and Heavy Machinery: Slewing rings are widely used in the construction industry for applications such as cranes, excavators, and concrete pumps. They enable the rotation of booms and arms, allowing for efficient material handling, precise positioning, and heavy load support.
  • Wind Energy: Slewing rings play a crucial role in wind turbines. They support the rotor and enable the yaw and pitch movements necessary to optimize wind capture and power generation. Slewing rings in wind turbines must handle substantial loads and operate reliably in harsh environmental conditions.
  • Industrial Automation: In industrial automation, slewing rings are employed in indexing tables, turntables, robotic arms, and packaging machinery. They enable precise and controlled rotation, facilitating automated processes, assembly lines, and material handling systems.
  • Transportation and Automotive: Slewing rings are commonly used in transportation and automotive applications, including vehicle cranes, truck-mounted cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They provide stable connections and controlled rotation, supporting tasks such as loading and unloading cargo or enabling safe access to elevated areas.
  • Marine and Offshore: Slewing rings are extensively employed in marine and offshore equipment, including ship cranes, davits, and rotating platforms on ships and offshore rigs. They withstand corrosive marine environments and heavy loads, enabling lifting operations and controlled rotation in challenging conditions.
  • Aerospace and Defense: Slewing rings are vital components in aerospace and defense applications, such as radar systems, missile launchers, and satellite antennas. They facilitate precise rotational movements required for tracking, targeting, and communication systems, and must meet stringent requirements for reliability and precision.
  • Medical and Rehabilitation: Slewing rings are used in medical and rehabilitation equipment like patient lifts, adjustable beds, and examination tables. They enable smooth and controlled movement, aiding in patient transfers, positioning, and providing comfort and support.

These are just a few examples of the industries and scenarios where slewing rings are commonly employed. Their versatility, load-bearing capacity, and ability to facilitate controlled rotation make them essential components in a wide range of applications across industries such as construction, renewable energy, industrial automation, transportation, marine, aerospace, and healthcare.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

Are there innovations or advancements in slewing ring technology that have emerged recently?

Yes, there have been several innovations and advancements in slewing ring technology that have emerged recently. These advancements aim to improve the performance, efficiency, durability, and versatility of slewing rings in various applications. Here’s a detailed explanation of some recent innovations in slewing ring technology:

  • Lightweight Materials: Manufacturers are increasingly exploring the use of lightweight materials such as aluminum alloys or advanced composites in slewing ring construction. These materials offer high strength-to-weight ratios, reducing the overall weight of the slewing ring without compromising its load-bearing capacity. The adoption of lightweight materials contributes to energy savings, improved maneuverability, and reduced structural stress.
  • Enhanced Sealing and Protection: Slewing rings are being equipped with advanced sealing systems and protective coatings to enhance their resistance to environmental factors such as dust, moisture, and chemicals. These innovations help prevent contamination, reduce friction, and extend the lifespan of the slewing rings, especially in harsh operating conditions.
  • Integrated Bearings and Gear Technology: Some slewing rings now incorporate integrated bearing and gear technologies. This integration eliminates the need for separate bearings and gears, simplifying the design and reducing assembly time. It also improves load distribution and torque transmission, resulting in smoother operation, increased efficiency, and reduced maintenance requirements.
  • Improved Lubrication Systems: Lubrication systems for slewing rings have seen advancements to enhance lubricant distribution and retention. Centralized lubrication systems, automatic lubrication systems, or sealed-for-life designs are being implemented to ensure optimal lubrication and minimize maintenance intervals. These advancements contribute to lower friction, reduced wear, and improved efficiency.
  • Condition Monitoring and Predictive Maintenance: Slewing rings are being equipped with condition monitoring systems that utilize sensors and data analysis techniques. These systems monitor parameters such as temperature, vibration, and load to detect anomalies and predict potential failures. By enabling predictive maintenance, these advancements help optimize maintenance schedules, minimize downtime, and extend the operational life of slewing rings.
  • Smart and Connected Features: The integration of smart and connected features in slewing rings is becoming more prevalent. Slewing rings equipped with IoT capabilities can communicate data wirelessly, enabling remote monitoring, diagnostics, and control. This facilitates real-time performance analysis, allows for centralized management of multiple slewing rings, and supports the implementation of advanced automation and optimization strategies.
  • Improved Manufacturing Techniques: Advances in manufacturing technologies, such as precision machining, automated assembly, and advanced quality control methods, have contributed to the production of high-quality slewing rings. These techniques ensure tighter tolerances, improved surface finishes, and enhanced reliability. Additionally, computer-aided design (CAD) and simulation tools allow for better optimization of slewing ring designs, resulting in improved performance and efficiency.

These recent innovations and advancements in slewing ring technology have opened up new possibilities for various industries where slewing rings are utilized, including construction, mining, renewable energy, material handling, and aerospace. They offer improved performance, increased durability, enhanced functionality, and greater efficiency, enabling the optimization of rotating systems and supporting the development of advanced applications.

China manufacturer Crane Slewing Replacements for Sy300 Crane Slewing Rings  China manufacturer Crane Slewing Replacements for Sy300 Crane Slewing Rings
editor by Dream 2024-04-29