Product Description

High quality Heavy Load slewing drive slewing bearing SC25 for aerial working platfrom and mounting crane, excavator and crane

Model Slewing Bearing SC25 Brand Corresun Drive
Holding Torque 158.3kN.m Tilting Moment Torque 271kN.m
Self-locking Yes Gear Ratio 150:1
Outer Dia. 675mm Inner Dia. 565mm
Rated Output Speed 1.5rpm Precison 0.17°
Static Axial Rating 2360kN Static Radial Rating 945kN


Coreun Drive slewing drive products are high-quality slewing drive products developed with independent technology and technology to meet market needs. CHINAMFG Drive has a full range of mature slewing drive products with multiple specifications and the ability to custom design and manufacture such products for customer needs. For different applications requiring low-speed heavy loads, high-speed medium loads and high-speed light loads, Khanwang can provide corresponding products or solutions.

CHINAMFG Drive’s worm-gear slewing drive includes 2 categories: cylindrical worms and envelope worms. Cylindrical worms are suitable for medium-speed and heavy-duty applications, while envelope worms are suitable for low-speed, heavy-duty and high-precision applications. The worm-gear slewing drive is self-locking , In the field of power sports, it can provide basic safety guarantee and further simplify the overall design of the equipment. It is a superior industrial accessory.

SC25 Single Worm Slewing Drive For Marine Crane.SC series of worm drive,designed by advanced production technology which have improve the impact and wearing resistance
 

SC25 Single Worm Slewing Drive For Marine Crane

1) SC series of worm drive,designed by advanced production technology which have improve the impact and wearing resistance

2) Top tracking precision

3) Strong corrosion resistance

Coresun Drive Slewing Drive, Slewing Ring Advantage

1. CHINAMFG Drive Slewing drive designed with hourglass worm shaft which provides more tooth contact and higher torque.

2. High transmission efficiency and accurate tracking

3. Easy installation and maintenance

4.Special heat treatment,corrosion resistance

5.We use framework oil sealing, so our slewing drive has higher dustproof and waterproof

6.CHINAMFG Drive use 8 bolts on worm shaft, so it is much stronger

Coresun Drive Slewing Bearing Production Photo


Coresun Drive testing reports for SC products on measurement, material and finished production

CONTACT US

It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Holding Torque: 158.3kn.M
Tilting Moment Torque: 271kn.M
Output Torque: 30kn,M
Output Speed: 1.5rpm
Gear Ratio: 102:1
IP Class: IP65
Customization:
Available

|

Can you provide examples of products or machinery that commonly use slewing rings?

Slewing rings are widely used in various industries and play a vital role in the functioning of numerous products and machinery. They offer rotational support, precise motion control, and load-bearing capabilities. Here are some examples of products or machinery that commonly utilize slewing rings:

  • Construction Machinery: Slewing rings are extensively used in construction machinery such as excavators, cranes, concrete pumps, and tower cranes. They enable the rotation and movement of the boom, arm, and bucket, allowing for precise control during digging, lifting, and material placement operations.
  • Material Handling Equipment: Slewing rings are essential components in material handling equipment like forklifts, stackers, and reach stackers. They facilitate the rotation and swiveling of the mast or boom, enabling efficient loading, unloading, and stacking of goods in warehouses, logistics centers, and ports.
  • Wind Turbines: Slewing rings are crucial in wind turbines, where they support the yaw and pitch mechanisms. The yaw system allows the turbine to rotate and face the wind direction, while the pitch system adjusts the angle of the blades for optimal wind capture. Slewing rings enable precise and controlled movement, ensuring efficient wind energy conversion.
  • Cranes: Various types of cranes, including mobile cranes, crawler cranes, and tower cranes, rely on slewing rings for their rotation and lifting capabilities. Slewing rings support the crane’s superstructure, allowing it to rotate horizontally, and provide stability and load-bearing capacity during lifting operations.
  • Rotary Drilling Rigs: Slewing rings are commonly used in rotary drilling rigs for oil and gas exploration, foundation construction, and mining operations. They enable the rotation and positioning of the drill mast, allowing for precise drilling and borehole creation.
  • Railway Equipment: Slewing rings find application in railway equipment such as rail cranes, railway maintenance machines, and turntables. They facilitate the rotation and movement of equipment, ensuring efficient maintenance, repairs, and track positioning.
  • Robotics: Slewing rings are integral to robotic systems, including industrial robots, robotic arms, and robotic welding systems. They enable the rotational movement and articulation of the robot’s joints, allowing for precise and controlled manipulation in manufacturing, assembly, and automation processes.
  • Solar Tracking Systems: Slewing rings are employed in solar tracking systems to orient solar panels toward the sun. They enable the rotation and tilting of the panels, maximizing solar energy absorption and optimizing power generation in solar farms and photovoltaic systems.
  • Turntables and Rotating Platforms: Slewing rings are used in turntables and rotating platforms found in various applications. They support the rotational movement of entertainment stages, amusement park rides, revolving restaurants, and display platforms in trade shows or exhibitions.

These are just a few examples of the diverse range of products and machinery that commonly utilize slewing rings. Their ability to provide rotational support, precise motion control, and load-bearing capabilities makes them indispensable components in numerous industries, including construction, material handling, energy, transportation, robotics, and entertainment.

How do slewing rings contribute to the adaptability and versatility of rotating systems in various settings?

Slewing rings play a crucial role in enhancing the adaptability and versatility of rotating systems across various settings. Here’s a detailed explanation of how slewing rings contribute to the adaptability and versatility of rotating systems:

  • 360-Degree Rotation: Slewing rings enable 360-degree continuous rotation, allowing rotating systems to operate in any direction. This flexibility is especially valuable in applications such as cranes, excavators, and wind turbines, where unrestricted rotation is necessary to perform tasks efficiently and access multiple work zones without repositioning the entire system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant radial, axial, and moment loads. Their robust construction and large diameter enable them to support heavy equipment and loads, making them suitable for a wide range of applications, including construction machinery, material handling systems, and offshore platforms. The high load-bearing capacity of slewing rings contributes to the adaptability of rotating systems in demanding settings.
  • Compact Design: Slewing rings have a compact and space-saving design compared to alternative mechanisms for rotational movement. This compactness allows for the integration of slewing rings into systems where space is limited, such as compact construction machinery, industrial robots, and medical equipment. The compact design of slewing rings enhances the adaptability of rotating systems in confined or restricted environments.
  • Versatile Mounting Options: Slewing rings offer versatile mounting options, allowing them to be easily integrated into different types of rotating systems. They can be mounted using various methods, including bolted connections, gear or pinion arrangements, or hydraulic or electric drives. This versatility in mounting options enables slewing rings to adapt to the specific requirements and constraints of different applications and settings.
  • Support for Multiple Components: Slewing rings provide support for various components that are essential for rotating systems. For example, they can support booms, arms, or jibs in construction machinery, or act as a base for rotating platforms or turntables in manufacturing or entertainment industries. By providing a stable and reliable foundation, slewing rings enable the integration of multiple components, enhancing the versatility and adaptability of the overall system.
  • Customization and Specialized Designs: Slewing rings can be customized and designed to meet specific application requirements. Manufacturers can tailor slewing rings to accommodate specific load capacities, dimensions, mounting arrangements, sealing systems, or environmental conditions. This customization allows for the adaptation of slewing rings to diverse settings, ensuring optimal performance and functionality.
  • Integration with Control Systems: Slewing rings can be integrated with electronic or computer-controlled components, such as sensors, actuators, and control systems. This integration enables precise control, automation, and synchronization of rotating systems. By incorporating advanced control features, slewing rings can adapt to dynamic operating conditions, optimize performance, and support advanced functionalities, such as coordinated motion, precision positioning, or remote monitoring.

In summary, slewing rings contribute to the adaptability and versatility of rotating systems by enabling 360-degree rotation, providing high load-bearing capacity, offering a compact design, supporting versatile mounting options, accommodating multiple components, allowing customization, and facilitating integration with control systems. These characteristics make slewing rings suitable for a wide range of applications and settings, enhancing the versatility and adaptability of rotating systems in industries such as construction, manufacturing, transportation, renewable energy, and many others.

How do electronic or computer-controlled components integrate with slewing rings in modern applications?

In modern applications, electronic or computer-controlled components are often integrated with slewing rings to enhance functionality, precision, and automation. This integration allows for advanced control, monitoring, and optimization of rotating systems. Here’s a detailed explanation of how electronic or computer-controlled components integrate with slewing rings in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with slewing rings to provide real-time feedback and data on various parameters. For example, position sensors can be used to accurately track the position and angle of the slewing ring, enabling precise control and positioning of the rotating components. Load sensors can measure the load applied to the slewing ring, allowing for dynamic load monitoring and optimization.
  • Control Systems: Computer-controlled components, such as programmable logic controllers (PLCs) or microcontrollers, can be used to manage the operation of slewing rings. These control systems can receive input from sensors and execute algorithms to control the speed, direction, and positioning of the slewing ring. By integrating electronic control systems, precise and automated control of the slewing ring can be achieved, improving efficiency and reducing human error.
  • Automation and Synchronization: In modern applications, slewing rings are often integrated into automated systems where they work in synchronization with other components. Electronic or computer-controlled components can facilitate this synchronization by coordinating the movements of multiple slewing rings or integrating them with other automated processes. This integration enables seamless and optimized operation of the rotating system as a whole.
  • Data Monitoring and Analysis: Electronic components can be used to collect and analyze data from slewing rings. This data can include parameters such as position, speed, temperature, and load. By monitoring and analyzing this data, it is possible to identify patterns, detect anomalies, and optimize the performance of the slewing rings. This information can be used for predictive maintenance, energy optimization, and performance improvement.
  • Communication and Networking: Electronic components enable communication and networking capabilities for slewing rings. They can be connected to a network or interface with other control systems, allowing for remote monitoring, control, and integration into larger systems. This enables centralized monitoring and control of multiple rotating systems, facilitating efficient operation and maintenance.
  • Feedback and Safety Systems: Electronic components can provide feedback and safety features in slewing ring applications. For example, limit switches or proximity sensors can detect the end positions of the slewing ring’s rotation and trigger safety mechanisms or control actions accordingly. This ensures safe operation, prevents over-rotation, and protects the equipment and personnel.

By integrating electronic or computer-controlled components with slewing rings, modern applications can achieve enhanced control, precision, automation, and data-driven optimization. This integration allows for efficient operation, improved safety, accurate positioning, synchronization with other systems, and the ability to adapt to changing operational requirements. It paves the way for advanced technologies such as robotics, Internet of Things (IoT), and Industry 4.0, where slewing rings play a vital role in the seamless integration of mechanical and electronic systems.

China Professional 25 Inch Slewing Gear Ring Used for Construction Machinery  China Professional 25 Inch Slewing Gear Ring Used for Construction Machinery
editor by Dream 2024-05-14