Product Description


Production Description for flanged type Slewing Bearing, ring bearing, rolling bearings, turntables, swing bearing

Slewing Bearing 061.50.1900.001.49.1504   for construction machinery, cranes,shipyard crane
 

1 Type single row 4 point contact ball slewing bearing, ring bearing, slewing gear
2 Bore diameter 1729mm
3 Outside diameter 2139.2mm
4 Height 109mm
5 Material 42CrMo, 50Mn
6 Precision P0. P6. P5.
7 Cage/retainer Nylon or aluminum
8 Gear type external gear teeth
9 N.W. 820KGS

 

 Single Row Four Point Contact Ball Slewing Bearing–Bearing ungeared
060.22.571.301.11.1504 060.22.0505.000.11.1503 060.22.571.502.11.1503
060.22. 0571 .001.11.1503 060.25.571.000.11.1504 060.25.571.000.11.1504
060.30. 0571 .100.11.1504 060.35.0680.000.11.1503 060.45.0805.001.11.1504
060.20.571.500.01.1503 060.20.0544.500.01.1503 060.20.0644.500.01.1503
060.20. 0571 .500.01.1503 060.20.0844.500.01.1503 060.20.0944.500.01.1503
060.20.1094.500.01.1503 060.20.571.575.01.1403 060.20.0544.575.01.1403
060.20.0644.575.01.1403 060.20. 0571 .575.01.1403 060.20.0844.575.01.1403
060.20.0944.575.01.1403 060.20.1094.575.01.1403 060.25.571.500.11.1503
060.25.571.500.11.1503 060.25.1055.500.11.1503 060.25.1155.500.11.1503
060.25.1255.500.11.1503 060.25.1355.500.11.1503 060.25.1455.500.11.1503
060.25.571.575.11.1403 060.25.571.575.11.1403 060.25.1055.575.11.1403
060.25.1155.575.11.1403 060.25.1255.575.11.1403 060.25.1355.575.11.1403
060.25.1455.575.11.1403    
 Single Row Four Point Contact Ball Slewing Bearing–Bearing with external gear
061.20.571.500.01.1503 061.20.0544.500.01.1503 061.20.0644.500.01.1503
061.20. 0571 .500.01.1503 061.20.0844.500.01.1503 061.20.0944.500.01.1503
061.20.1094.500.01.1503 061.20.571.575.01.1403 06120.0544.575.01.1403
061.20.0644.575.01.1403 061.20. 0571 .575.01.1403 061.20.0844.575.01.1403
061.20.0944.575.01.1403 061.20.1094.575.01.1403 061.25.571.500.11.1503
061.25.571.500.11.1503 061.25.1055.500.11.1503 061.25.1155.500.11.1503
061.25.1255.500.11.1503 061.25.1355.500.11.1503 061.25.1455.500.11.1503
061.25.571.575.11.1403 061.25.571.575.11.1403 061.25.1055.575.11.1403
061.25.1155.575.11.1403 061.25.1255.575.11.1403 061.25.1355.575.11.1403
061.25.1455.575.11.1403 061.25.0764.103.11.1504 061.25.0764.106.21.1504
061.25.0980.107.11.1504 061.25.0980.108.21.1504 061.20.0400.100.1.1503
061.20.0400.101.21.1503 061.20.0450.100.11.1503 061.20.0450.101.21.1503
061.20.0560.100.11.1503 061.20.0560.101.21.1503 061.20.0630.100.11.1503
061.20.0630.101.21.1503 061.20.571.100.11.1503 061.20.571.101.21.1503
061.25.0764.600.11.1503 061.25.0764.601.21.1503 061.25.0980.890.11.1503
061.25.0764.103.11.1504 061.25.0764.106.21.1504 061.25.0980.107.11.1504
061.25.0980.891.21.1503 061.25.1120.000.11.1504 061.25.1120.001.21.1504
061.25.0980.108.21.1504 061.25.1250.100.11.1504 061.25.1250.101.21.1504
061.30.1180.001.21.1504 061.30.1180.000.11.1504 061.30.1320.000.11.1504
061.30.1320.001.21.1504 061.30.1500.200.11.1504 061.30.1500.201.21.1523
061.40.1400.000.19.1504 061.40.1400.001.29.1504 061.40.1600.009.29.1503
061.40.1600.008.19.1504 061.40.1800.013.19.1503 061.40.1800.014.29.1503
061.50.1900.001.49.1504 061.50.2130.001.49.1504 061.50.2355.001.49.1504
061.50.2645.001.49.1504    
 Single Row Four Point Contact Ball Slewing Bearing–Bearing with internal gear
062.20.571.500.01.1503 062.20.0544.500.01.1503 062.20.0644.500.01.1503
062.20. 0571 .500.01.1503 062.20.0844.500.01.1503 062.20.0944.500.01.1503
062.20.1094.500.01.1503 062.20.571.575.01.1403 062.20.0544.575.01.1403
062.20.0644.575.01.1403 062.20. 0571 .575.01.1403 062.20.0844.575.01.1403
062.20.0944.575.01.1403 062.20.1094.575.01.1403 062.25.571.500.11.1503
062.25.571.500.11.1503 062.25.1055.500.11.1503 062.25.1155.500.11.1503
062.25.1255.500.11.1503 062.25.1355.500.11.1503 062.25.1455.500.11.1503
062.25.571.575.11.1403 062.25.571.575.11.1403 062.25.1055.575.11.1403
062.25.1155.575.11.1403 062.25.1255.575.11.1403 062.25.1355.575.11.1403
062.25.1455.575.11.1403 062.25.0866.106.11.1504 062.25.0866.109.21.1504
062.25.1077.308.11.1504 062.25.1077.304.21.1504 062.20.0400.000.11.1503
062.20.0400.001.21.1503 062.20.0450.000.11.1503 062.20.0450.001.21.1503
062.20.0560.000.11.1503 062.20.0560.001.21.1503 062.20.0630.000.11.1503
062.20.0630.001.21.1503 062.20.571.000.11.1503 062.20.571.001.21.1503
062.25. 0571 .800.11.1504 062.25. 0571 .801.21.1504 062.25.1077.890.11.1503
062.25.1077.891.21.1503 062.25.1180.000.11.1504 062.25.1180.001.21.1504
062.30.1120.000.11.1504 062.30.1120.001.21.1504 062.30.1250.000.11.1504
062.30.1250.001.21.1504 062.30.1400.000.11.1504 062.30.1400.001.21.1504
062.30.1600.000.11.1504 062.30.1600.001.21.1504 062.40.1500.000.19.1504
062.40.1500.001.29.1504 062.40.1700.007.19.1503 062.40.1700.008.29.1503
062.50.1800.001.49.1504 062.50.2000.001.49.1504 062.50.2240.001.49.1504
062.50.2490.001.49.1504 062.50.2800.001.49.1504  

Why choose CHINAMFG slewing bearings
A CHINAMFG in slewing bearing field, rich experience, can do design, produce, mounting guide
Small order accepted
ISO certified company
Variorum models
7*24hours hotline to help you with your cranes
Strict quality control system to ensure quality for slewing bearing

LYHY Slewing Bearing Types
LYHY slewing bearings can be divided into the following types as per  their structures:
single row 4 point contact ball slewing bearing,
single row cross roller slewing bearing,
double row different ball diameter slewing bearing,
three row cylindrical roller slewing bearing and roller/ball combination slewing bearing.
And all these types of slewing bearings can be further divided into bearings without gears, bearings with external gears and bearings with internal gears.

Detailed description of these types slewing bearings

Single row 4 point contact ball slewing bearings
     This kind of slewing bearings can support high dynamic loads, transmitting axial and radial forces simultaneously as well as the resulting tilting moments. Applications of this kind of bearings are hoisting, mechanical handling and general mechanical engineering etc.
Single row cross roller slewing bearings
     This kind of bearings can support combinations of large radial force, medium axial force and tilting moment with small or zero clearance. Main applications of this kind of bearings are hoisting and mechanical handling and general mechanical engineering etc.
Double row different ball diameter slewing bearings
     This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.
Triple row cylindrical roller slewing bearings
     This kind of bearings has high load carrying capacity. Under same loads, this kind of bearings has much smaller diameters which can make the installation much compact, as different kinds of loads are supported by different races and rollers. Main applications of this kind of bearings are hoisting, mechanical handling, mining and materials handling, offshore technology and general mechanical engineering etc.
Roller/ball combination slewing bearings
     This kind of bearings can support high axial load and low tilting moments. Usually they are large diameter slewing bearings. Applications of this kind of bearings are mining and materials handling etc.

About CHINAMFG bearings
1.introduction:we are a manufacturer of slewing bearing since 1993, our factory occupies a area of 30000square CHINAMFG with 4 workshop and 1 office building. 
2. Featured products: slewing bearing and slewing drive
3. Capital: Current is 1 million RMB, but we are increasing the capital to 10 million RMB
4. Workers: 40
5. Certificate: ISO9001:2008, 3.1 certificate, CCS certificate, Science and Technology Progress Award
6. Annual Exportation: 8million USD
7. Exported countries: (39)
Asia: India, Pakistan, Iran, Signore, Georgia, Malaysia, Vietnam, Thailand, Philippines, Israel, Korea, UAE, Sri Lanka, Saudi Arabia,
Europe: Turkey, Russia, Spain, Czech Republic, Italy, Poland, Slovakia, Bosnia and Herzegovina, Austria, France, Germany, Switzerland, Finland, Ukraine, UK
America: USA, Canada, Mexico, Brazil, Puerto Rico, Peru, Chile
Africa: South Africa, Egypt
Oceania: Australia

Production Process of CHINAMFG slewing bearings

Quality Control Process of CHINAMFG slewing bearings

LYHY Slewing Bearing Packing 
Bearing surface is covered with the anti-rust oil first; and then wrapped with the plastic film;
And then packed with kraft paper and professional belts;
At last, with wooden box totally at the outer packing to invoid the rust or the moist;
We can depend on the customers  demand to be packed;

Transportation:
All CHINAMFG slewing ring bearings can be usually delivered timely, usual production time is 15-50 days based on different slew bearings diameters, sometimes slew rings will be in stock.
Slewing bearings can be offered different delivery terms, such as EXW, FOB, CIF, DDU and so on. 
Also, slewing rings can be transported by different transport ways, by express (such as DHL, TNT, UPS, FEDEX and so on), by air, by sea, by truck, by railway and so on.

Slewing Ring Bearings——Applications:
Slewing ring bearings are widely used in industry and known as “the machine joints” Here under is the specific slewing bearing applications
1. Construction machinery (e.g. cranes, excavators, loader, scraper)
2. Metallurgical machinery (e.g. for steel plant)
3. Heavy machinery equipment (e.g. mining machinery, concrete machinery)
4. Marine machinery equipment (e.g. vessel, port hoisting machine, port oil transfer equipment, onshore and offshore crane)
5. Light machinery equipment (e.g. paper machine, plastic, rubber machine, weave machine)
6. Wind power generator
8. Packing machinery

INSTALLATION OF CHINAMFG SLEWING BEARINGS

Preparation:
Make sure that the model is correct and slewing bearing isn’t damaged during transportation.
2.  Check the appearance and rotational state of the bearing, such as rotational precision clearance, rotating flexibility, seals position, lubrication grease etc.
3.  The installation datum plane and bracket installing plane should be clean, grease, burr, paint and other foreign body should be wiped off.

Installation:

1. The screws in the installing plane should be fit with the mounting holes in the slewing bearing
2.  The slewing bearing has a soft zone marked with an “s” on the upper surface, when installing the bearing, it is important to ensure that this area is placed in a non-load or infrequent load zone.
3.  When the bearing is placed on the supporting frame work it is important to check the interface between these 2 surfaces. This check should be carried out with the insertion of feel gauges between the 2 surfaces. If a gap should exist then it is recommended to plane/resurface the effective area so as to remove the gap.
4.  Install slewing bearing with high strength screws, and choose appropriate strength bolts. All bolts are required to be tightened evenly. The sequence of this tightening process is shown in Pic. Welding of bearing is not allowed, in the event of welding any adjacent parts, heat transfer shall be avoided so as to cause the bearing to become deformed or change the hardness.
5.  After installation, the bearing should be rotated to check for smooth operation and any emission of unusual noise. If either of the aforementioned are noted, then the bearing should be adjusted to eliminate them. The teeth of the largest run-out are coated with green paint.

FAQ:

Q: Are LYHY BEARINGS trading company or manufacturer?
A: LYHY BEARINGS is a professional manufacturer for slewing bearings, thin section bearings, ball bearings and rolling bearings

Q: How do LYHY BEARINGS control quality of their bearing?
A: LYHY BEARINGS has established strict quality control systems, all the products and services has passed ISO9001-2008 Quality Certificate and third party such as CCS, LR,ABS,BV

Q: What is the MOQ?
A: MOQ is 1pc, pls message us for detailed information.

Q: How about the package for CHINAMFG bearings?
A: Standard Industrial packing in general condition (Plastic tube+ professional plastic belts+ plywood case). Accept design package when OEM.

Q: How long is the production time?
A: It takes about 7-40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have your own forwarder.

Q: Is sample available?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable for LYHY BEARINGS. We can design as per your requirements and use your own LOGO and package design.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Four Point Contact Ball
Material: 50mn or 42CrMo4
Type: Internal Gear

Samples:
US$ 3800/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

How does the design of a slewing ring contribute to efficient rotation and movement?

The design of a slewing ring plays a crucial role in facilitating efficient rotation and movement in mechanical systems. Several design features contribute to its functionality and performance. Here’s a detailed explanation of how the design of a slewing ring contributes to efficient rotation and movement:

  • Structure and Load Distribution: Slewing rings are designed with a large diameter compared to their thickness. This structural design ensures optimal load distribution across the bearing, allowing it to support axial, radial, and moment loads efficiently. The arrangement of rolling elements within the raceways helps distribute the load evenly, reducing stress concentrations and minimizing friction during rotation.
  • Low Friction and Smooth Rotation: The rolling elements, which can be balls or rollers, are precisely positioned within the raceways of the inner and outer rings. The design ensures that the rolling elements make contact with the raceways at specific angles, reducing friction and enabling smooth rotation. This low-friction design minimizes power loss, enhances energy efficiency, and contributes to the overall efficiency of the system.
  • Gear Mechanism: In some slewing ring designs, a gear mechanism is integrated into the bearing. This allows the slewing ring to act as a rotational drive system, enabling controlled and precise movement. The gear teeth engage with external gears or pinions, providing a means to transmit torque and facilitating rotational motion. The gear mechanism in a slewing ring design contributes to efficient and synchronized rotation in applications where precise positioning or continuous rotation is required.
  • Sealing and Lubrication: Slewing rings are designed with sealing systems to protect the internal components from contaminants and prevent lubricant leakage. The sealing systems help maintain the integrity of the bearing by keeping out dirt, dust, water, and other particles that could cause damage or premature wear. Proper lubrication is also crucial for efficient rotation and movement. The design of slewing rings often includes lubrication channels or grease fittings to ensure adequate lubricant supply to the rolling elements and raceways, reducing friction and promoting smooth operation.
  • Materials and Durability: Slewing rings are typically made of high-quality materials such as alloy steels or specialty steels that offer excellent strength, durability, and corrosion resistance. The choice of materials and the design of the slewing ring take into account the specific application requirements, including factors such as load capacity, operating temperature, and environmental conditions. The design ensures that the slewing ring can withstand the anticipated loads, operating conditions, and service life requirements.

Overall, the design of a slewing ring is carefully engineered to maximize load-bearing capacity, minimize friction, enable smooth rotation, and ensure durability. By incorporating features such as optimized load distribution, low-friction rolling elements, gear mechanisms, sealing systems, and appropriate materials, slewing rings contribute to efficient rotation and movement in mechanical systems, enhancing the overall performance and reliability of the equipment.

How do electronic or computer-controlled components integrate with slewing rings in modern applications?

In modern applications, electronic or computer-controlled components are often integrated with slewing rings to enhance functionality, precision, and automation. This integration allows for advanced control, monitoring, and optimization of rotating systems. Here’s a detailed explanation of how electronic or computer-controlled components integrate with slewing rings in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with slewing rings to provide real-time feedback and data on various parameters. For example, position sensors can be used to accurately track the position and angle of the slewing ring, enabling precise control and positioning of the rotating components. Load sensors can measure the load applied to the slewing ring, allowing for dynamic load monitoring and optimization.
  • Control Systems: Computer-controlled components, such as programmable logic controllers (PLCs) or microcontrollers, can be used to manage the operation of slewing rings. These control systems can receive input from sensors and execute algorithms to control the speed, direction, and positioning of the slewing ring. By integrating electronic control systems, precise and automated control of the slewing ring can be achieved, improving efficiency and reducing human error.
  • Automation and Synchronization: In modern applications, slewing rings are often integrated into automated systems where they work in synchronization with other components. Electronic or computer-controlled components can facilitate this synchronization by coordinating the movements of multiple slewing rings or integrating them with other automated processes. This integration enables seamless and optimized operation of the rotating system as a whole.
  • Data Monitoring and Analysis: Electronic components can be used to collect and analyze data from slewing rings. This data can include parameters such as position, speed, temperature, and load. By monitoring and analyzing this data, it is possible to identify patterns, detect anomalies, and optimize the performance of the slewing rings. This information can be used for predictive maintenance, energy optimization, and performance improvement.
  • Communication and Networking: Electronic components enable communication and networking capabilities for slewing rings. They can be connected to a network or interface with other control systems, allowing for remote monitoring, control, and integration into larger systems. This enables centralized monitoring and control of multiple rotating systems, facilitating efficient operation and maintenance.
  • Feedback and Safety Systems: Electronic components can provide feedback and safety features in slewing ring applications. For example, limit switches or proximity sensors can detect the end positions of the slewing ring’s rotation and trigger safety mechanisms or control actions accordingly. This ensures safe operation, prevents over-rotation, and protects the equipment and personnel.

By integrating electronic or computer-controlled components with slewing rings, modern applications can achieve enhanced control, precision, automation, and data-driven optimization. This integration allows for efficient operation, improved safety, accurate positioning, synchronization with other systems, and the ability to adapt to changing operational requirements. It paves the way for advanced technologies such as robotics, Internet of Things (IoT), and Industry 4.0, where slewing rings play a vital role in the seamless integration of mechanical and electronic systems.

How do slewing rings contribute to precise and controlled motion in machinery?

Slewing rings play a crucial role in enabling precise and controlled motion in machinery. Their design and functionality contribute to achieving accurate positioning, smooth rotation, and controlled movement. Here’s a detailed explanation of how slewing rings contribute to precise and controlled motion:

  • Precision Engineering: Slewing rings are meticulously engineered to provide high precision in motion control. The manufacturing processes involve tight tolerances and precise machining to ensure accurate dimensions and alignment of the rolling elements and raceways. This precision engineering minimizes any deviations or errors in motion, allowing for precise positioning and controlled movement.
  • Low Friction and Smooth Rotation: Slewing rings are designed to minimize friction and enable smooth rotation. The rolling elements, whether balls or rollers, are precisely positioned and guided within the raceways of the slewing ring. This design ensures that the rolling elements make contact with the raceways at specific angles, reducing friction during rotation. The low-friction characteristics allow for smooth and controlled motion, enabling precise positioning without undue resistance or jerky movements.
  • Integrated Gear Mechanism: Many slewing rings are equipped with an integrated gear mechanism. The gear teeth on the inner or outer ring of the slewing ring engage with external gears or pinions, providing a means to transmit torque and control rotational motion. The gear mechanism allows for precise and controlled movement, enabling operators or automated systems to achieve accurate positioning and controlled rotation at desired speeds.
  • Backlash Control: Backlash refers to the slight play or clearance between mating gears or components. Slewing rings are designed to minimize backlash, particularly in applications that require precise motion control. By reducing or eliminating backlash, slewing rings ensure that there is minimal lost motion or error when initiating rotational movement or changing direction. This feature contributes to improved accuracy and controlled motion.
  • Stiffness and Rigidity: Slewing rings are designed to provide high stiffness and rigidity, minimizing deflection or deformation during operation. This characteristic is especially important in applications where precise and controlled motion is required. The high stiffness of slewing rings ensures that the applied forces and torques are efficiently transmitted, allowing for accurate positioning and controlled motion without significant distortion or flexing.
  • Positioning Sensors and Feedback Systems: In conjunction with slewing rings, machinery often incorporates positioning sensors and feedback systems. These sensors and systems provide real-time data on the position, speed, and rotation of the slewing ring. By continuously monitoring and adjusting the motion based on the feedback, precise and controlled movement can be achieved, enabling accurate positioning and motion control.

Overall, slewing rings contribute to precise and controlled motion in machinery through their precision engineering, low friction, integrated gear mechanisms, backlash control, stiffness, and compatibility with positioning sensors and feedback systems. These features ensure accurate positioning, smooth rotation, and controlled movement, making slewing rings essential components for applications that require precise motion control in various industries such as construction, material handling, robotics, and manufacturing.

China Professional CCS Certified Swing Bearing 061.50.1900.001.49.1504 Slewing Ring  China Professional CCS Certified Swing Bearing 061.50.1900.001.49.1504 Slewing Ring
editor by Dream 2024-04-30