Product Description

OEM Turntable Bearing 23 0571 01 China Precision Ball Slewing Rings Supplier

Four-point contact ball slewing turntable bearings 
consist of 2 ring seats. Compact structure, light weight, steel ball and arc track contact at 4 points, can bear axial force, radial force and overturning moment at the same time, has strong dynamic load.

Single row cross roller slewing bearing
Composed of 2 or 3 rings. compact structure, light weight, high manufacturing accuracy, small assembly gap and high requirement for installation accuracy. Rollers are 1:1 cross-arranged.
Can be bear axial force, overturning moment and large radial force at the same time,and widely used in lifting transportation, construction machinery and precesion products.

Double row ball slewing bearings
This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.

Three row roller slewing bearing
Three row roller bearing able to bear all kinds of loads at the same time, it is the largest 1 of the 4 structural products with large axle and radial dimensions and firm structure. Especially suitable for heavy machinery requiring larger diameter, such as bucket wheel stacker and reclaimer, wheel crane, marine crane, port crane, ladle turret,large tonnage truck crane,heavy machinery and so on.

 

Type • Single row 4 point contact ball slewing bearing 
• Single row crossed cylindrical roller slewing bearings
• Double row ball slewing bearings
•Double row Roller/ball combination slewing bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Customized
Cage Material Nylon/ steel /copper
Structure taper pin , Mounting holes,Inner ring ,grease fitting,load plug, seals , roller ,spacer balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through hole/Tapped hole
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , offshore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name LYMC
Place of Origin HangZhou ZheJiang
Warranty 12 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

 


Product Process

Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo

Customization:
Available

|

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

Are there innovations or advancements in slewing ring technology that have emerged recently?

Yes, there have been several innovations and advancements in slewing ring technology that have emerged recently. These advancements aim to improve the performance, efficiency, durability, and versatility of slewing rings in various applications. Here’s a detailed explanation of some recent innovations in slewing ring technology:

  • Lightweight Materials: Manufacturers are increasingly exploring the use of lightweight materials such as aluminum alloys or advanced composites in slewing ring construction. These materials offer high strength-to-weight ratios, reducing the overall weight of the slewing ring without compromising its load-bearing capacity. The adoption of lightweight materials contributes to energy savings, improved maneuverability, and reduced structural stress.
  • Enhanced Sealing and Protection: Slewing rings are being equipped with advanced sealing systems and protective coatings to enhance their resistance to environmental factors such as dust, moisture, and chemicals. These innovations help prevent contamination, reduce friction, and extend the lifespan of the slewing rings, especially in harsh operating conditions.
  • Integrated Bearings and Gear Technology: Some slewing rings now incorporate integrated bearing and gear technologies. This integration eliminates the need for separate bearings and gears, simplifying the design and reducing assembly time. It also improves load distribution and torque transmission, resulting in smoother operation, increased efficiency, and reduced maintenance requirements.
  • Improved Lubrication Systems: Lubrication systems for slewing rings have seen advancements to enhance lubricant distribution and retention. Centralized lubrication systems, automatic lubrication systems, or sealed-for-life designs are being implemented to ensure optimal lubrication and minimize maintenance intervals. These advancements contribute to lower friction, reduced wear, and improved efficiency.
  • Condition Monitoring and Predictive Maintenance: Slewing rings are being equipped with condition monitoring systems that utilize sensors and data analysis techniques. These systems monitor parameters such as temperature, vibration, and load to detect anomalies and predict potential failures. By enabling predictive maintenance, these advancements help optimize maintenance schedules, minimize downtime, and extend the operational life of slewing rings.
  • Smart and Connected Features: The integration of smart and connected features in slewing rings is becoming more prevalent. Slewing rings equipped with IoT capabilities can communicate data wirelessly, enabling remote monitoring, diagnostics, and control. This facilitates real-time performance analysis, allows for centralized management of multiple slewing rings, and supports the implementation of advanced automation and optimization strategies.
  • Improved Manufacturing Techniques: Advances in manufacturing technologies, such as precision machining, automated assembly, and advanced quality control methods, have contributed to the production of high-quality slewing rings. These techniques ensure tighter tolerances, improved surface finishes, and enhanced reliability. Additionally, computer-aided design (CAD) and simulation tools allow for better optimization of slewing ring designs, resulting in improved performance and efficiency.

These recent innovations and advancements in slewing ring technology have opened up new possibilities for various industries where slewing rings are utilized, including construction, mining, renewable energy, material handling, and aerospace. They offer improved performance, increased durability, enhanced functionality, and greater efficiency, enabling the optimization of rotating systems and supporting the development of advanced applications.

How does the design of a slewing ring contribute to efficient rotation and movement?

The design of a slewing ring plays a crucial role in facilitating efficient rotation and movement in mechanical systems. Several design features contribute to its functionality and performance. Here’s a detailed explanation of how the design of a slewing ring contributes to efficient rotation and movement:

  • Structure and Load Distribution: Slewing rings are designed with a large diameter compared to their thickness. This structural design ensures optimal load distribution across the bearing, allowing it to support axial, radial, and moment loads efficiently. The arrangement of rolling elements within the raceways helps distribute the load evenly, reducing stress concentrations and minimizing friction during rotation.
  • Low Friction and Smooth Rotation: The rolling elements, which can be balls or rollers, are precisely positioned within the raceways of the inner and outer rings. The design ensures that the rolling elements make contact with the raceways at specific angles, reducing friction and enabling smooth rotation. This low-friction design minimizes power loss, enhances energy efficiency, and contributes to the overall efficiency of the system.
  • Gear Mechanism: In some slewing ring designs, a gear mechanism is integrated into the bearing. This allows the slewing ring to act as a rotational drive system, enabling controlled and precise movement. The gear teeth engage with external gears or pinions, providing a means to transmit torque and facilitating rotational motion. The gear mechanism in a slewing ring design contributes to efficient and synchronized rotation in applications where precise positioning or continuous rotation is required.
  • Sealing and Lubrication: Slewing rings are designed with sealing systems to protect the internal components from contaminants and prevent lubricant leakage. The sealing systems help maintain the integrity of the bearing by keeping out dirt, dust, water, and other particles that could cause damage or premature wear. Proper lubrication is also crucial for efficient rotation and movement. The design of slewing rings often includes lubrication channels or grease fittings to ensure adequate lubricant supply to the rolling elements and raceways, reducing friction and promoting smooth operation.
  • Materials and Durability: Slewing rings are typically made of high-quality materials such as alloy steels or specialty steels that offer excellent strength, durability, and corrosion resistance. The choice of materials and the design of the slewing ring take into account the specific application requirements, including factors such as load capacity, operating temperature, and environmental conditions. The design ensures that the slewing ring can withstand the anticipated loads, operating conditions, and service life requirements.

Overall, the design of a slewing ring is carefully engineered to maximize load-bearing capacity, minimize friction, enable smooth rotation, and ensure durability. By incorporating features such as optimized load distribution, low-friction rolling elements, gear mechanisms, sealing systems, and appropriate materials, slewing rings contribute to efficient rotation and movement in mechanical systems, enhancing the overall performance and reliability of the equipment.

China Standard OEM Turntable Bearing 23 0941 01 China Precision Ball Slewing Rings Supplier  China Standard OEM Turntable Bearing 23 0941 01 China Precision Ball Slewing Rings Supplier
editor by Dream 2024-04-30