Product Description

High quality swivel drive gear motor SC17 for rotation euqipment aerial working platform, crane application.
 

Model Slewing Bearing SC17 Brand Coresun Drive
Holding Torque 72.3Kn.m Tilting Moment Torque 135.6Kn.m
Self-locking Yes Gear Ratio 102:1
Outer Dia. 480mm Inner Dia. 365mm
Rated Output Speed 1.47rpm Precison 0.17°

Coreun Drive slewing drive products are high-quality slewing drive products developed with independent technology and technology to meet market needs. CHINAMFG Drive has a full range of mature slewing drive products with multiple specifications and the ability to custom design and manufacture such products for customer needs. For different applications requiring low-speed heavy loads, high-speed medium loads and high-speed light loads, Khanwang can provide corresponding products or solutions.

CHINAMFG Drive’s worm-gear slewing drive includes 2 categories: cylindrical worms and envelope worms. Cylindrical worms are suitable for medium-speed and heavy-duty applications, and envelope worms are suitable for low-speed, heavy-duty and high-precision applications. The worm-gear slewing drive is self-locking , In the field of power sports, it can provide basic safety guarantee and further simplify the overall design of the equipment. It is a superior industrial accessory.

1: How to order? 

Please refer to the help under the single payment.

 

2.What are the shipping methods?

CHINAMFG shipment to the port close to your city;  Air shipment to the airport close to your company;  Door to door service by international express.

 

3.When can I get the price? 

We usually quote within 12 hours after we get your inquiry. If urgent to get the price, please call us or tell us by email , we will regard your inquiry priority. 

 

4.You are a trader or a manufacturer? We are an industry and trade integration business, our factory located on HangZhou City.

 

5.How about the payment terms?

We usually accept T/T or L/C or Alibaba insurance order. other terms also could be negotiated.

 

6.What is your minimum order? It depends on what you are buying. Normally, our minimum order is 1pcs.

 

7.What is your delivery time?

If there are any parts in stock , our delivery time is only 3-7 days. If our standard model,the delivery time is around 25 days,if non-standard model,the delivery time is 38~45 days.

8. Warranty?
2 years for normal working condition.

Coresun Drive Slewing Bearing Production Photo and Packing

Coresun Drive Relevant Certification as following 

CONTACT US

It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Holding Torque: 72.3kn.M
Tilting Moment Torque: 135.6kn.M
Output Torque: 12.24kn.M
Output Speed: 1.47rpm
Gear Ratio: 102:1
IP Class: IP65

Customization:
Available

|

Can you describe the factors to consider when selecting slewing rings for specific applications?

When selecting slewing rings for specific applications, several factors need to be considered to ensure optimal performance and reliability. Here’s a detailed description of the factors to consider:

  • Load Requirements: The load capacity of the slewing ring should match the anticipated loads in the application. Consider both the maximum static load (weight of the structure or equipment) and dynamic load (forces during operation). It is crucial to analyze the load distribution, including axial, radial, and moment loads, and select a slewing ring with sufficient load-carrying capacity to handle these loads.
  • Space Limitations: Evaluate the available space for the installation of the slewing ring. Consider the diameter, height, and width of the slewing ring to ensure it fits within the space constraints of the application. It is essential to consider both the external dimensions of the slewing ring and the required clearance for rotation.
  • Rotational Speed: Determine the required rotational speed of the slewing ring. Consider the application’s operating speed and any specific speed limitations. The slewing ring should be selected to accommodate the rotational speed requirements while maintaining smooth and efficient operation.
  • Environmental Conditions: Evaluate the operating environment of the application. Factors such as temperature, humidity, dust, water exposure, chemicals, and corrosive elements should be considered. Choose a slewing ring with appropriate sealing systems, corrosion-resistant materials, and lubrication options to withstand the specific environmental conditions.
  • Accuracy and Positioning: Some applications require precise positioning and rotational accuracy. Determine the required level of accuracy and select a slewing ring that provides the necessary precision. Factors such as gear mechanism, backlash control, and manufacturing tolerances contribute to the accuracy of the slewing ring.
  • Operating Conditions: Consider the overall operating conditions of the application, including factors such as shock and vibration levels, duty cycle, continuous or intermittent operation, and expected service life. The slewing ring should be designed to withstand the anticipated operating conditions and provide reliable performance over the desired lifespan.
  • Integration and Compatibility: Assess the integration requirements of the slewing ring with the rest of the system or equipment. Consider factors such as mounting interfaces, connection points, gear compatibility, and the need for additional components such as drive systems or bearings. Ensure that the selected slewing ring is compatible with the existing or planned system components.
  • Industry Standards and Regulations: Depending on the application, specific industry standards and regulations may apply. Consider any applicable standards, such as ISO specifications or industry-specific guidelines, to ensure compliance and safety in the selection of the slewing ring.

By carefully analyzing these factors and selecting a slewing ring that meets the specific requirements of the application, one can ensure optimal performance, longevity, and reliability of the slewing ring in its intended use.

What is a slewing ring, and how is it used in mechanical systems?

A slewing ring, also known as a slewing bearing or turntable bearing, is a specialized type of rolling element bearing that enables rotational movement between two components. It consists of an inner ring, an outer ring, rolling elements (such as balls or rollers), and often a gear mechanism. Slewing rings are used in mechanical systems where there is a need for smooth and controlled rotation. Here’s a detailed explanation of what a slewing ring is and how it is used:

  • Structure and Components: A slewing ring typically has a large diameter compared to its thickness, allowing it to support axial, radial, and moment loads. The inner and outer rings have raceways that the rolling elements move along. The rolling elements, which can be balls or rollers, distribute the load and facilitate smooth rotation. In some cases, a gear mechanism is integrated into the slewing ring, allowing it to act as a rotational drive system.
  • Rotational Movement: The primary function of a slewing ring is to enable rotational movement between two components. It provides a stable and low-friction interface that allows one component to rotate relative to the other. The rolling elements within the raceways minimize friction and distribute the load evenly, resulting in smooth and controlled rotation. Slewing rings can support both continuous rotation and intermittent or oscillating movement, depending on the application requirements.
  • Load Support: Slewing rings are designed to support various types of loads. They can handle axial loads, which are forces acting parallel to the axis of rotation, as well as radial loads, which are forces acting perpendicular to the axis of rotation. Additionally, slewing rings can accommodate moment loads, which are a combination of axial and radial loads that create bending or twisting forces. The load-carrying capacity of a slewing ring depends on factors such as its size, design, and choice of rolling elements.
  • Applications: Slewing rings find applications in a wide range of mechanical systems across different industries. Some common uses include:
  • Construction and Cranes: Slewing rings are extensively used in construction machinery, cranes, and mobile equipment. They enable 360-degree rotation of the boom or jib, allowing for efficient material handling and positioning.
  • Wind Turbines: Slewing rings are crucial components in wind turbine systems. They support the rotor, allowing it to rotate according to wind direction, and provide a connection between the rotor and the nacelle, enabling yaw movement.
  • Industrial Equipment: Slewing rings are utilized in various industrial equipment, including indexing tables, turntables, robotic arms, and packaging machinery. They facilitate precise and controlled rotation in these applications.
  • Transportation and Automotive: Slewing rings are employed in transportation and automotive applications, such as vehicle cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They enable safe and smooth rotation in these specialized systems.
  • Medical and Rehabilitation Equipment: Slewing rings are used in medical and rehabilitation equipment, such as patient lifts and adjustable beds. They allow for smooth and controlled movement, aiding in patient care and mobility assistance.

In summary, a slewing ring is a specialized bearing that enables controlled rotational movement between components in mechanical systems. Its ability to support various loads, provide smooth rotation, and accommodate different applications makes it a valuable component in a wide range of industries.

How does the choice of slewing rings affect the overall performance and reliability of rotating systems?

The choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. The selection of the appropriate slewing ring involves considering various factors such as load capacity, operating conditions, precision requirements, and application-specific needs. Here’s a detailed explanation of how the choice of slewing rings affects the overall performance and reliability of rotating systems:

  • Load Capacity: The load capacity of the slewing ring is a critical factor in determining the performance and reliability of the rotating system. Choosing a slewing ring with an adequate load capacity ensures that the system can handle the expected loads without excessive stress or deformation. If the selected slewing ring has insufficient load capacity for the application, it can lead to premature failure, increased wear, and compromised reliability.
  • Operating Conditions: The operating conditions, including factors such as temperature, humidity, dust, and exposure to corrosive substances, influence the choice of slewing rings. It is essential to select a slewing ring that is designed to withstand the specific environmental conditions of the application. Failure to consider the operating conditions can result in accelerated wear, corrosion, reduced performance, and decreased reliability of the rotating system.
  • Precision Requirements: Some applications require high precision and accuracy in the movement and positioning of the rotating system. The choice of slewing ring with appropriate precision is crucial to meet these requirements. Slewing rings designed for precision applications incorporate features such as high-precision raceways, gear teeth, or preloading mechanisms. Selecting a slewing ring with inadequate precision can lead to inaccuracies, positioning errors, and compromised performance of the rotating system.
  • Material Selection: The choice of materials for the slewing ring affects its durability, resistance to wear, and overall reliability. Different materials, such as carbon steel, stainless steel, or specialized alloys, have varying properties and performance characteristics. The selection of the appropriate material depends on factors such as load requirements, operating conditions, and the presence of corrosive or abrasive elements. Choosing the wrong material can result in premature wear, reduced lifespan, and compromised reliability of the rotating system.
  • Sealing and Lubrication: Slewing rings require proper sealing and lubrication to ensure smooth operation and prevent contamination or inadequate lubrication. The choice of slewing rings with effective sealing mechanisms and suitable lubrication requirements is crucial for maintaining performance and reliability. Inadequate sealing or improper lubrication can lead to increased friction, accelerated wear, and decreased reliability of the rotating system.
  • Manufacturer and Quality: The choice of a reputable manufacturer and high-quality slewing rings is essential for ensuring reliability and performance. Reliable manufacturers adhere to stringent quality control processes, use advanced manufacturing techniques, and provide comprehensive technical support. Choosing slewing rings from trusted manufacturers reduces the risk of premature failures, ensures consistent performance, and enhances the overall reliability of the rotating system.

In summary, the choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. Considering factors such as load capacity, operating conditions, precision requirements, material selection, sealing and lubrication, and the reputation of the manufacturer helps in selecting the appropriate slewing rings. By making the right choice, the rotating system can operate efficiently, withstand expected loads, maintain precision, and provide reliable performance throughout its lifespan.

China OEM CE Certificated Slew Drive  China OEM CE Certificated Slew Drive
editor by Dream 2024-04-25