Product Description

1. Company introduction 

HangZhou King Slewing Bearing Technology Co.,Ltd.is a professional manufacturer and exporter of excavator slewing rings, its factory is located in HangZhou city, ZheJiang Province,very close to ZheJiang Port, goods can be easily transported all over the world.

Our main product is excavator slewing rings, we can now produce more than 1000 part numbers to match with many famous excavator brands, such as CATERPILLAR,  , HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, LIEBHERR, DAEWOO, JCB,CASE, SUMITOMO, KATO,etc. 

Our engineers have more than 20 years rich experience in studying excavator slewing rings and we have professional measuring team can go to customers ‘ workplace  to measure the old or broken slewing rings, then to produce the same replacements. We have our own factory with latest CNC machines , such as vertical lathes, gear hobbing machines, gear shaping machines, hole drilling mahines, quenching machines, vertical grinding machines, turning machines,etc. to meet customers’ quick delivery requirements. 

We will adhere to the “quality first, credibility first” business philosophy and continually provide our clients with superior quality products and services. We warmly welcome customers from all over the world to visit us and together to build a better future !

2. Our slewing rings can match with more than 1000 excavator models. 

3. Our excavator part numbers as below:

SANY Excavator Slewing Ring Replacement 
Excavator model number Part number Excavator model number Part number
SANY 130   J2C.4.3 SANY 230C  
SANY SY135 C    SY235C  
SANY 200   SANY 365C 13484728
SANY210    SANY 365C B22990057156
SY215C 11841739 SCC550  10942045
SANY 230   SY850C  

4. Our excavator slewing ring pictures

5. Our slewing bearing packaging pictures 

6. Transportation way: By sea/ air/ rail/ road/ TNT/DHL/UPS/Fedex,ect. 

7. Contact information
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Short Delivery Time
Sealing Gland: Seal Rings
Rolling-Element Number: Single Row
Roller Type: Four Point Contact
Material: 50mn/42CrMo

Samples:
US$ 1080/Set
1 Set(Min.Order)

|

Customization:
Available

|

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

How do slewing rings contribute to the adaptability and versatility of rotating systems in various settings?

Slewing rings play a crucial role in enhancing the adaptability and versatility of rotating systems across various settings. Here’s a detailed explanation of how slewing rings contribute to the adaptability and versatility of rotating systems:

  • 360-Degree Rotation: Slewing rings enable 360-degree continuous rotation, allowing rotating systems to operate in any direction. This flexibility is especially valuable in applications such as cranes, excavators, and wind turbines, where unrestricted rotation is necessary to perform tasks efficiently and access multiple work zones without repositioning the entire system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant radial, axial, and moment loads. Their robust construction and large diameter enable them to support heavy equipment and loads, making them suitable for a wide range of applications, including construction machinery, material handling systems, and offshore platforms. The high load-bearing capacity of slewing rings contributes to the adaptability of rotating systems in demanding settings.
  • Compact Design: Slewing rings have a compact and space-saving design compared to alternative mechanisms for rotational movement. This compactness allows for the integration of slewing rings into systems where space is limited, such as compact construction machinery, industrial robots, and medical equipment. The compact design of slewing rings enhances the adaptability of rotating systems in confined or restricted environments.
  • Versatile Mounting Options: Slewing rings offer versatile mounting options, allowing them to be easily integrated into different types of rotating systems. They can be mounted using various methods, including bolted connections, gear or pinion arrangements, or hydraulic or electric drives. This versatility in mounting options enables slewing rings to adapt to the specific requirements and constraints of different applications and settings.
  • Support for Multiple Components: Slewing rings provide support for various components that are essential for rotating systems. For example, they can support booms, arms, or jibs in construction machinery, or act as a base for rotating platforms or turntables in manufacturing or entertainment industries. By providing a stable and reliable foundation, slewing rings enable the integration of multiple components, enhancing the versatility and adaptability of the overall system.
  • Customization and Specialized Designs: Slewing rings can be customized and designed to meet specific application requirements. Manufacturers can tailor slewing rings to accommodate specific load capacities, dimensions, mounting arrangements, sealing systems, or environmental conditions. This customization allows for the adaptation of slewing rings to diverse settings, ensuring optimal performance and functionality.
  • Integration with Control Systems: Slewing rings can be integrated with electronic or computer-controlled components, such as sensors, actuators, and control systems. This integration enables precise control, automation, and synchronization of rotating systems. By incorporating advanced control features, slewing rings can adapt to dynamic operating conditions, optimize performance, and support advanced functionalities, such as coordinated motion, precision positioning, or remote monitoring.

In summary, slewing rings contribute to the adaptability and versatility of rotating systems by enabling 360-degree rotation, providing high load-bearing capacity, offering a compact design, supporting versatile mounting options, accommodating multiple components, allowing customization, and facilitating integration with control systems. These characteristics make slewing rings suitable for a wide range of applications and settings, enhancing the versatility and adaptability of rotating systems in industries such as construction, manufacturing, transportation, renewable energy, and many others.

How do slewing rings contribute to precise and controlled motion in machinery?

Slewing rings play a crucial role in enabling precise and controlled motion in machinery. Their design and functionality contribute to achieving accurate positioning, smooth rotation, and controlled movement. Here’s a detailed explanation of how slewing rings contribute to precise and controlled motion:

  • Precision Engineering: Slewing rings are meticulously engineered to provide high precision in motion control. The manufacturing processes involve tight tolerances and precise machining to ensure accurate dimensions and alignment of the rolling elements and raceways. This precision engineering minimizes any deviations or errors in motion, allowing for precise positioning and controlled movement.
  • Low Friction and Smooth Rotation: Slewing rings are designed to minimize friction and enable smooth rotation. The rolling elements, whether balls or rollers, are precisely positioned and guided within the raceways of the slewing ring. This design ensures that the rolling elements make contact with the raceways at specific angles, reducing friction during rotation. The low-friction characteristics allow for smooth and controlled motion, enabling precise positioning without undue resistance or jerky movements.
  • Integrated Gear Mechanism: Many slewing rings are equipped with an integrated gear mechanism. The gear teeth on the inner or outer ring of the slewing ring engage with external gears or pinions, providing a means to transmit torque and control rotational motion. The gear mechanism allows for precise and controlled movement, enabling operators or automated systems to achieve accurate positioning and controlled rotation at desired speeds.
  • Backlash Control: Backlash refers to the slight play or clearance between mating gears or components. Slewing rings are designed to minimize backlash, particularly in applications that require precise motion control. By reducing or eliminating backlash, slewing rings ensure that there is minimal lost motion or error when initiating rotational movement or changing direction. This feature contributes to improved accuracy and controlled motion.
  • Stiffness and Rigidity: Slewing rings are designed to provide high stiffness and rigidity, minimizing deflection or deformation during operation. This characteristic is especially important in applications where precise and controlled motion is required. The high stiffness of slewing rings ensures that the applied forces and torques are efficiently transmitted, allowing for accurate positioning and controlled motion without significant distortion or flexing.
  • Positioning Sensors and Feedback Systems: In conjunction with slewing rings, machinery often incorporates positioning sensors and feedback systems. These sensors and systems provide real-time data on the position, speed, and rotation of the slewing ring. By continuously monitoring and adjusting the motion based on the feedback, precise and controlled movement can be achieved, enabling accurate positioning and motion control.

Overall, slewing rings contribute to precise and controlled motion in machinery through their precision engineering, low friction, integrated gear mechanisms, backlash control, stiffness, and compatibility with positioning sensors and feedback systems. These features ensure accurate positioning, smooth rotation, and controlled movement, making slewing rings essential components for applications that require precise motion control in various industries such as construction, material handling, robotics, and manufacturing.

China Custom Sy135 C Machine Parts Slewing Bearing Slewing Ring Replacement  China Custom Sy135 C Machine Parts Slewing Bearing Slewing Ring Replacement
editor by CX 2024-04-04