Product Description

Slewing ring is a new type of mechanical parts nearly 40 years CHINAMFG emerging, it consists of inner and outer ring, rolling body and so on. At present, Chinese slewing bearing finalized production is mainly introduced from Germany in the early 80 s by ZheJiang  Construction Machinery Research Institute
Slewing ring is widely used in the real industrial application, called the machine joint. It needs relative rotational motion, and also need to support axial force , radial force and overturning moment, so it is a necessary and important mechanical transmission part.
Company has established the standard strict quality management system, equipped with advanced 3 coordinate measuring machine, gantry laser measurement system geometry, material universal testing machine, impact testing machine, electronic load brinell hardness tester, rockwell hardness tester, micro hardness tester, shaw sclerometer, video measuring instrument, Swiss altimeter, Zeiss metallographic microscope, direct reading spectrometer, magnetic powder flaw detector, ultrasonic flaw detector, portable walk-in laboratory (high and low temperature test chamber, salt spray test chamber, electromagnetic vibration table, sealing performance tester, torque tester, granite platform, digital multi-function test bench, wind power (life) test rig, testing and analytical instruments such as all kinds of large-scale, high-precision test instruments and equipment, the rotary bearing raw materials can be the factory reinspection, semi-finished products, finished product shape tolerance of mechanical precision measurement, and complete the type testing of finished products, etc., from raw material chemical composition and mechanical properties to product processing precision and performance index of the whole process quality control.
   Through the process of plHangZhou, monitoring, data statistics, QC and staff training and so on effective work, implement the product quality, work quality and continuous improvement and improve service quality, meet the wind power generation, medical equipment and  products industries such as high precision, high reliable product performance requirements.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24h
Warranty: 2y
Transport Package: Pallet
Specification: 200-80000
Trademark: Fangyuan
Origin: China

Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

What advantages do slewing rings offer compared to other rotational components?

Slewing rings offer several advantages compared to other rotational components. Their unique design and features make them a preferred choice in various applications. Here’s a detailed explanation of the advantages that slewing rings offer:

  • Compact Design: Slewing rings have a compact design that allows for efficient use of space. Compared to other rotational components such as gears and bearings, slewing rings provide a compact solution for supporting axial, radial, and moment loads while enabling rotational motion. Their compactness is especially advantageous in applications with limited space or weight constraints.
  • High Load-Carrying Capacity: Slewing rings are designed to handle significant loads. They are capable of supporting both axial and radial loads, as well as moment loads that result from uneven weight distribution or external forces. The robust construction and precise engineering of slewing rings enable them to withstand heavy loads, making them suitable for applications that require high load-carrying capacity.
  • Smooth Rotation: Slewing rings offer smooth rotation, allowing for precise and controlled motion. The rolling elements, whether balls or rollers, are positioned and guided within the raceways of the slewing ring to minimize friction and ensure smooth movement. This smooth rotation contributes to precise positioning and controlled motion, which is essential in applications that require accurate positioning and smooth operation.
  • Integrated Gear Mechanism: Many slewing rings come with an integrated gear mechanism. This eliminates the need for additional gearing components, simplifies the design, and reduces assembly time and costs. The integrated gear mechanism allows for torque transmission and rotational control, enabling precise and controlled motion without the need for external gearing systems.
  • Backlash Control: Slewing rings can be designed with minimal backlash, ensuring precise motion control. Backlash refers to the play or clearance between mating gears or components, which can lead to lost motion or inaccuracies in positioning. By minimizing backlash, slewing rings offer improved accuracy and repeatability in motion control applications.
  • Versatility and Customization: Slewing rings are highly versatile and can be customized to meet specific application requirements. They can be tailored in terms of dimensions, load capacity, mounting interfaces, gear specifications, sealing systems, and materials. This versatility allows slewing rings to be optimized for various industries and applications, ensuring the best performance and compatibility.
  • Durable and Low Maintenance: Slewing rings are designed to be durable and require minimal maintenance. They are constructed with high-quality materials, precision manufacturing, and appropriate sealing systems to withstand harsh operating conditions and contaminants. This durability and low maintenance requirement contribute to the long service life and reliability of slewing rings.

Overall, slewing rings offer advantages such as compact design, high load-carrying capacity, smooth rotation, integrated gear mechanism, backlash control, versatility, customization options, and durability. These advantages make slewing rings a preferred choice in various applications, including construction machinery, material handling equipment, cranes, wind turbines, robotics, and manufacturing systems.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

Can you explain the impact of slewing rings on the overall efficiency of rotating systems?

Slewing rings play a crucial role in the overall efficiency of rotating systems. Their design, performance, and proper functioning significantly impact the efficiency, performance, and reliability of various rotating systems. Here’s a detailed explanation of the impact of slewing rings on the overall efficiency of rotating systems:

  • Rotational Movement: Slewing rings enable smooth and controlled rotational movement in rotating systems. They support the rotation of components such as booms, arms, platforms, or structures with minimal friction and resistance. By minimizing energy losses due to friction, slewing rings contribute to the overall efficiency of the system.
  • Precision and Accuracy: Slewing rings provide precise and accurate motion control in rotating systems. They ensure smooth and controlled rotation, allowing for precise positioning, alignment, or tracking of components. The ability to achieve precise movements reduces the need for corrective actions and enhances the overall efficiency and productivity of the system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant loads in rotating systems. They provide robust load-bearing capabilities, distributing the load evenly and minimizing stress concentrations. By efficiently carrying and transferring loads, slewing rings optimize the system’s load capacity and prevent premature wear or failure of components.
  • Reduction of Friction and Wear: Properly lubricated and maintained slewing rings help reduce friction and wear in rotating systems. They minimize the energy losses associated with friction, resulting in improved efficiency. Reduced friction also decreases the wear and tear on the components, prolonging their lifespan and reducing the need for frequent repairs or replacements.
  • Stability and Safety: Slewing rings provide stability and safety to rotating systems. They ensure the smooth and stable rotation of components, minimizing vibrations, wobbling, or unintended movements. This stability not only enhances the system’s efficiency but also improves the safety of operations, reducing the risk of accidents or damage to the equipment and surrounding environment.
  • Impact on Power Transmission: Slewing rings are often integrated with power transmission systems in rotating systems. They efficiently transmit power from the drive source to the rotating components, ensuring the effective transfer of torque and rotational force. By optimizing power transmission, slewing rings contribute to the overall efficiency and performance of the system.
  • System Integration and Versatility: Slewing rings are designed to integrate seamlessly into various rotating systems. They can be customized to meet specific requirements, such as size, load capacity, or environmental conditions. The versatility of slewing rings allows for their efficient integration into different applications, enhancing the overall efficiency and adaptability of the rotating systems.

In summary, slewing rings have a significant impact on the overall efficiency of rotating systems. Their contribution to smooth rotational movement, precision, load-bearing capacity, reduction of friction and wear, stability, power transmission, system integration, and versatility all play a vital role in maximizing the efficiency, performance, and reliability of various rotating systems in industries such as construction, material handling, energy, transportation, and manufacturing.

China best Bearing Ring Slewing Swing Ring Rotary Bearing Ring for Heavy Machinery  China best Bearing Ring Slewing Swing Ring Rotary Bearing Ring for Heavy Machinery
editor by CX 2024-01-11