Product Description

Supply cross roller slewing ring bearing CRBC8016 for drilling equipment robot arm slewing bearing swing circle

Cross roller bearing sepecification
With the Cross-Roller Ring, cylindrical rollers are arranged crosswise, with each roller perpendicular to the adjacent roller, in a 90° V groove, separated from each other by a spacer retainer. This design allows just 1 bearing to receive loads in all directions including, radial, axial and moment loads.
Since the Cross-Roller Ring achieves high rigidity despite the minimum possible dimensions of the inner and outer rings, it is optimal for applications such as joints and swiveling units of industrial robots, swiveling tables of machining centers, rotary
units of manipulators, precision rotary tables, medical equipment, measuring instruments and IC manufacturing machines

Bearing characteristics:
1. High precision: P4 precision, P2 precision
2. High rigidity: This series bearing have preload
3. High load:This series bearing can bear double-direction axial load, radial load and tilting moment
4. Small size: This series bearing can save space for machine tools
APPLICATION:
widely used on high precision rotary table, robot joints, rotating units, sophisticated medical equipments, and measurement instruments.

1. Industrial Neutral Packing
2. Package as your requirements.
3. Small size Bearings:Plastic vacuum packaging bag+Paper Box/Neutral Carton
4.Large size Bearings:Plastic film+pergamyn paper+Roll tape+Wooden Box
5.Shipping:By air or By sea:DHL/TNT/UPS/EMS etc

shaft diameter (mm) Identification number Main dimensions(mm) Mounting dimensions (mm) CRBC CRB Weight
  With cage Full Complement inner ring 
d
outer diameter D width
B
Chamfer (min) da Da Basic dynamic load rating C 
(KN)
Basic static load rating Co 
(KN)
Basic dynamic load rating C 
(KN)
Basic static load rating Co 
(KN)
(Kg)
40 CRBC 4571 CRB 4571 40 65 10 0.3 44 54 4.28 5.14 5.98 8.04 0.15
50 CRBC 5013 CRB 5013 50 80 13 0.6 55 71 10.7 12.6 14.2 18.4 0.29
60 CRBC 6013 CRB 6013 60 90 13 0.6 64 81 11.6 14.6 15.4 21.5 0.33
70 CRBC 7013 CRB 7013 70 100 13 0.6 75 91 12.3 16.7 17 25.5 0.38
80 CRBC 8016 CRB 8016 80 120 16 0.6 86 107 18.2 25.5 24.3 37.5 0.74
90 CRBC 9016 CRB 9016 90 130 16 1 98 118 19.4 28.6 25.9 42.1 0.81
100 CRBC1571 CRB 1571 100 150 20 1 108 134 31.5 45.1 39.4 61.1 1.45
110 CRBC11571 CRB 11571 110 160 20 1 118 144 33.5 50.7 41.2 66.7 1.56
120 CRBC 12571 CRB 12571 120 180 25 1.5 132 164 47.7 70.5 59.9 95.4 2.62
130 CRBC13571 CRB 13571 130 190 25 1.5 140 172 49.2 74.8 61 99.8 2.82
140 CRBC 14571 CRB 14571 140 200 25 1.5 151 183 50.7 79.2 64.1 108 2.96

 

Product Process

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: 30% T/T in advance, 70% balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: 50mn/42CrMo
Spherical: Non-Aligning Bearings
Load Direction: Axial Bearing

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

In what industries or scenarios are slewing rings commonly employed?

Slewing rings find extensive use in various industries and scenarios where controlled rotational movement and load-bearing capabilities are required. Here’s a detailed explanation of the industries and scenarios where slewing rings are commonly employed:

  • Construction and Heavy Machinery: Slewing rings are widely used in the construction industry for applications such as cranes, excavators, and concrete pumps. They enable the rotation of booms and arms, allowing for efficient material handling, precise positioning, and heavy load support.
  • Wind Energy: Slewing rings play a crucial role in wind turbines. They support the rotor and enable the yaw and pitch movements necessary to optimize wind capture and power generation. Slewing rings in wind turbines must handle substantial loads and operate reliably in harsh environmental conditions.
  • Industrial Automation: In industrial automation, slewing rings are employed in indexing tables, turntables, robotic arms, and packaging machinery. They enable precise and controlled rotation, facilitating automated processes, assembly lines, and material handling systems.
  • Transportation and Automotive: Slewing rings are commonly used in transportation and automotive applications, including vehicle cranes, truck-mounted cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They provide stable connections and controlled rotation, supporting tasks such as loading and unloading cargo or enabling safe access to elevated areas.
  • Marine and Offshore: Slewing rings are extensively employed in marine and offshore equipment, including ship cranes, davits, and rotating platforms on ships and offshore rigs. They withstand corrosive marine environments and heavy loads, enabling lifting operations and controlled rotation in challenging conditions.
  • Aerospace and Defense: Slewing rings are vital components in aerospace and defense applications, such as radar systems, missile launchers, and satellite antennas. They facilitate precise rotational movements required for tracking, targeting, and communication systems, and must meet stringent requirements for reliability and precision.
  • Medical and Rehabilitation: Slewing rings are used in medical and rehabilitation equipment like patient lifts, adjustable beds, and examination tables. They enable smooth and controlled movement, aiding in patient transfers, positioning, and providing comfort and support.

These are just a few examples of the industries and scenarios where slewing rings are commonly employed. Their versatility, load-bearing capacity, and ability to facilitate controlled rotation make them essential components in a wide range of applications across industries such as construction, renewable energy, industrial automation, transportation, marine, aerospace, and healthcare.

Are there innovations or advancements in slewing ring technology that have emerged recently?

Yes, there have been several innovations and advancements in slewing ring technology that have emerged recently. These advancements aim to improve the performance, efficiency, durability, and versatility of slewing rings in various applications. Here’s a detailed explanation of some recent innovations in slewing ring technology:

  • Lightweight Materials: Manufacturers are increasingly exploring the use of lightweight materials such as aluminum alloys or advanced composites in slewing ring construction. These materials offer high strength-to-weight ratios, reducing the overall weight of the slewing ring without compromising its load-bearing capacity. The adoption of lightweight materials contributes to energy savings, improved maneuverability, and reduced structural stress.
  • Enhanced Sealing and Protection: Slewing rings are being equipped with advanced sealing systems and protective coatings to enhance their resistance to environmental factors such as dust, moisture, and chemicals. These innovations help prevent contamination, reduce friction, and extend the lifespan of the slewing rings, especially in harsh operating conditions.
  • Integrated Bearings and Gear Technology: Some slewing rings now incorporate integrated bearing and gear technologies. This integration eliminates the need for separate bearings and gears, simplifying the design and reducing assembly time. It also improves load distribution and torque transmission, resulting in smoother operation, increased efficiency, and reduced maintenance requirements.
  • Improved Lubrication Systems: Lubrication systems for slewing rings have seen advancements to enhance lubricant distribution and retention. Centralized lubrication systems, automatic lubrication systems, or sealed-for-life designs are being implemented to ensure optimal lubrication and minimize maintenance intervals. These advancements contribute to lower friction, reduced wear, and improved efficiency.
  • Condition Monitoring and Predictive Maintenance: Slewing rings are being equipped with condition monitoring systems that utilize sensors and data analysis techniques. These systems monitor parameters such as temperature, vibration, and load to detect anomalies and predict potential failures. By enabling predictive maintenance, these advancements help optimize maintenance schedules, minimize downtime, and extend the operational life of slewing rings.
  • Smart and Connected Features: The integration of smart and connected features in slewing rings is becoming more prevalent. Slewing rings equipped with IoT capabilities can communicate data wirelessly, enabling remote monitoring, diagnostics, and control. This facilitates real-time performance analysis, allows for centralized management of multiple slewing rings, and supports the implementation of advanced automation and optimization strategies.
  • Improved Manufacturing Techniques: Advances in manufacturing technologies, such as precision machining, automated assembly, and advanced quality control methods, have contributed to the production of high-quality slewing rings. These techniques ensure tighter tolerances, improved surface finishes, and enhanced reliability. Additionally, computer-aided design (CAD) and simulation tools allow for better optimization of slewing ring designs, resulting in improved performance and efficiency.

These recent innovations and advancements in slewing ring technology have opened up new possibilities for various industries where slewing rings are utilized, including construction, mining, renewable energy, material handling, and aerospace. They offer improved performance, increased durability, enhanced functionality, and greater efficiency, enabling the optimization of rotating systems and supporting the development of advanced applications.

China Hot selling Supply Cross Roller Slewing Ring Bearing Crbc8016 for Drilling Equipment Robot Arm Slewing Bearing Swing Circle  China Hot selling Supply Cross Roller Slewing Ring Bearing Crbc8016 for Drilling Equipment Robot Arm Slewing Bearing Swing Circle
editor by Dream 2024-05-07