Product Description

162.28.1500.890.11.1503 Inner Gear Turntable Bearing Slewing Ring For Excavator

Four-point contact ball slewing turntable bearings
consist of 2 ring seats. Compact structure, light weight, steel ball and arc track contact at 4 points, can bear axial force, radial force and overturning moment at the same time, has strong dynamic load.

Single row cross roller slewing bearing
Composed of 2 or 3 rings. compact structure, light weight, high manufacturing accuracy, small assembly gap and high requirement for installation accuracy. Rollers are 1:1 cross-arranged.
Can be bear axial force, overturning moment and large radial force at the same time,and widely used in lifting transportation, construction machinery and precesion products.

Double row ball slewing bearings
This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.

Three row roller slewing bearing
Three row roller bearing able to bear all kinds of loads at the same time, it is the largest 1 of the 4 structural products with large axle and radial dimensions and firm structure. Especially suitable for heavy machinery requiring larger diameter, such as bucket wheel stacker and reclaimer, wheel crane, marine crane, port crane, ladle turret,large tonnage truck crane,heavy machinery and so on.

 

Type • Single row 4 point contact ball slewing bearing 
• Single row crossed cylindrical roller slewing bearings
• Double row ball slewing bearings
•Double row Roller/ball combination slewing bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Customized
Cage Material Nylon/ steel /copper
Structure taper pin , Mounting holes,Inner ring ,grease fitting,load plug, seals , roller ,spacer balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through hole/Tapped hole
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , offshore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name LYMC
Place of Origin HangZhou ZheJiang
Warranty 12 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

 


Product Process

Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo

Customization:
Available

|

How do slewing rings contribute to the adaptability and versatility of rotating systems in various settings?

Slewing rings play a crucial role in enhancing the adaptability and versatility of rotating systems across various settings. Here’s a detailed explanation of how slewing rings contribute to the adaptability and versatility of rotating systems:

  • 360-Degree Rotation: Slewing rings enable 360-degree continuous rotation, allowing rotating systems to operate in any direction. This flexibility is especially valuable in applications such as cranes, excavators, and wind turbines, where unrestricted rotation is necessary to perform tasks efficiently and access multiple work zones without repositioning the entire system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant radial, axial, and moment loads. Their robust construction and large diameter enable them to support heavy equipment and loads, making them suitable for a wide range of applications, including construction machinery, material handling systems, and offshore platforms. The high load-bearing capacity of slewing rings contributes to the adaptability of rotating systems in demanding settings.
  • Compact Design: Slewing rings have a compact and space-saving design compared to alternative mechanisms for rotational movement. This compactness allows for the integration of slewing rings into systems where space is limited, such as compact construction machinery, industrial robots, and medical equipment. The compact design of slewing rings enhances the adaptability of rotating systems in confined or restricted environments.
  • Versatile Mounting Options: Slewing rings offer versatile mounting options, allowing them to be easily integrated into different types of rotating systems. They can be mounted using various methods, including bolted connections, gear or pinion arrangements, or hydraulic or electric drives. This versatility in mounting options enables slewing rings to adapt to the specific requirements and constraints of different applications and settings.
  • Support for Multiple Components: Slewing rings provide support for various components that are essential for rotating systems. For example, they can support booms, arms, or jibs in construction machinery, or act as a base for rotating platforms or turntables in manufacturing or entertainment industries. By providing a stable and reliable foundation, slewing rings enable the integration of multiple components, enhancing the versatility and adaptability of the overall system.
  • Customization and Specialized Designs: Slewing rings can be customized and designed to meet specific application requirements. Manufacturers can tailor slewing rings to accommodate specific load capacities, dimensions, mounting arrangements, sealing systems, or environmental conditions. This customization allows for the adaptation of slewing rings to diverse settings, ensuring optimal performance and functionality.
  • Integration with Control Systems: Slewing rings can be integrated with electronic or computer-controlled components, such as sensors, actuators, and control systems. This integration enables precise control, automation, and synchronization of rotating systems. By incorporating advanced control features, slewing rings can adapt to dynamic operating conditions, optimize performance, and support advanced functionalities, such as coordinated motion, precision positioning, or remote monitoring.

In summary, slewing rings contribute to the adaptability and versatility of rotating systems by enabling 360-degree rotation, providing high load-bearing capacity, offering a compact design, supporting versatile mounting options, accommodating multiple components, allowing customization, and facilitating integration with control systems. These characteristics make slewing rings suitable for a wide range of applications and settings, enhancing the versatility and adaptability of rotating systems in industries such as construction, manufacturing, transportation, renewable energy, and many others.

How do electronic or computer-controlled components integrate with slewing rings in modern applications?

In modern applications, electronic or computer-controlled components are often integrated with slewing rings to enhance functionality, precision, and automation. This integration allows for advanced control, monitoring, and optimization of rotating systems. Here’s a detailed explanation of how electronic or computer-controlled components integrate with slewing rings in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with slewing rings to provide real-time feedback and data on various parameters. For example, position sensors can be used to accurately track the position and angle of the slewing ring, enabling precise control and positioning of the rotating components. Load sensors can measure the load applied to the slewing ring, allowing for dynamic load monitoring and optimization.
  • Control Systems: Computer-controlled components, such as programmable logic controllers (PLCs) or microcontrollers, can be used to manage the operation of slewing rings. These control systems can receive input from sensors and execute algorithms to control the speed, direction, and positioning of the slewing ring. By integrating electronic control systems, precise and automated control of the slewing ring can be achieved, improving efficiency and reducing human error.
  • Automation and Synchronization: In modern applications, slewing rings are often integrated into automated systems where they work in synchronization with other components. Electronic or computer-controlled components can facilitate this synchronization by coordinating the movements of multiple slewing rings or integrating them with other automated processes. This integration enables seamless and optimized operation of the rotating system as a whole.
  • Data Monitoring and Analysis: Electronic components can be used to collect and analyze data from slewing rings. This data can include parameters such as position, speed, temperature, and load. By monitoring and analyzing this data, it is possible to identify patterns, detect anomalies, and optimize the performance of the slewing rings. This information can be used for predictive maintenance, energy optimization, and performance improvement.
  • Communication and Networking: Electronic components enable communication and networking capabilities for slewing rings. They can be connected to a network or interface with other control systems, allowing for remote monitoring, control, and integration into larger systems. This enables centralized monitoring and control of multiple rotating systems, facilitating efficient operation and maintenance.
  • Feedback and Safety Systems: Electronic components can provide feedback and safety features in slewing ring applications. For example, limit switches or proximity sensors can detect the end positions of the slewing ring’s rotation and trigger safety mechanisms or control actions accordingly. This ensures safe operation, prevents over-rotation, and protects the equipment and personnel.

By integrating electronic or computer-controlled components with slewing rings, modern applications can achieve enhanced control, precision, automation, and data-driven optimization. This integration allows for efficient operation, improved safety, accurate positioning, synchronization with other systems, and the ability to adapt to changing operational requirements. It paves the way for advanced technologies such as robotics, Internet of Things (IoT), and Industry 4.0, where slewing rings play a vital role in the seamless integration of mechanical and electronic systems.

Can you describe the factors to consider when selecting slewing rings for specific applications?

When selecting slewing rings for specific applications, several factors need to be considered to ensure optimal performance and reliability. Here’s a detailed description of the factors to consider:

  • Load Requirements: The load capacity of the slewing ring should match the anticipated loads in the application. Consider both the maximum static load (weight of the structure or equipment) and dynamic load (forces during operation). It is crucial to analyze the load distribution, including axial, radial, and moment loads, and select a slewing ring with sufficient load-carrying capacity to handle these loads.
  • Space Limitations: Evaluate the available space for the installation of the slewing ring. Consider the diameter, height, and width of the slewing ring to ensure it fits within the space constraints of the application. It is essential to consider both the external dimensions of the slewing ring and the required clearance for rotation.
  • Rotational Speed: Determine the required rotational speed of the slewing ring. Consider the application’s operating speed and any specific speed limitations. The slewing ring should be selected to accommodate the rotational speed requirements while maintaining smooth and efficient operation.
  • Environmental Conditions: Evaluate the operating environment of the application. Factors such as temperature, humidity, dust, water exposure, chemicals, and corrosive elements should be considered. Choose a slewing ring with appropriate sealing systems, corrosion-resistant materials, and lubrication options to withstand the specific environmental conditions.
  • Accuracy and Positioning: Some applications require precise positioning and rotational accuracy. Determine the required level of accuracy and select a slewing ring that provides the necessary precision. Factors such as gear mechanism, backlash control, and manufacturing tolerances contribute to the accuracy of the slewing ring.
  • Operating Conditions: Consider the overall operating conditions of the application, including factors such as shock and vibration levels, duty cycle, continuous or intermittent operation, and expected service life. The slewing ring should be designed to withstand the anticipated operating conditions and provide reliable performance over the desired lifespan.
  • Integration and Compatibility: Assess the integration requirements of the slewing ring with the rest of the system or equipment. Consider factors such as mounting interfaces, connection points, gear compatibility, and the need for additional components such as drive systems or bearings. Ensure that the selected slewing ring is compatible with the existing or planned system components.
  • Industry Standards and Regulations: Depending on the application, specific industry standards and regulations may apply. Consider any applicable standards, such as ISO specifications or industry-specific guidelines, to ensure compliance and safety in the selection of the slewing ring.

By carefully analyzing these factors and selecting a slewing ring that meets the specific requirements of the application, one can ensure optimal performance, longevity, and reliability of the slewing ring in its intended use.

China factory 162.28.1500.890.11.1503 Inner Gear Turntable Bearing Slewing Ring for Excavator  China factory 162.28.1500.890.11.1503 Inner Gear Turntable Bearing Slewing Ring for Excavator
editor by Dream 2024-05-07