Product Description

Stainless Steel Ring Forgings Loose Flange Backing Rings China


 

Product Description

The forged ring for feed machine pallet mill.

1.Forged SHAFT,forged RING;forged BLOCK;forged FLANGE.
Pipe sheet,gear ring,slewing bearing ring…most of forging parts.
Forged steel flanges/carbon steel flanges/stainless steel flanges.
2.Material: 4130, 4140, 4317, 4142, 4340, UNS440, 34CrNi3Mo,25Cr2Ni4MOV,18CrNiMo5, 30CrMo, 9Cr2Mo, 9Cr2W, 9Cr3Mo, 60CrMoV etc.

3.Dual certified to ASME/ASTM SA/A182 and EN15712-5 or DIN17440 

4.PED-AD 2000-Merkblatt W0

 

 

Forging Product Size Range
Forgings Raw Material Min.Size            (mm) Max.Size                            (mm) Min.Weight (kgs) Max.Weight   (kgs) Heat Treatment
Shaft Carbon steel 
Stainless Steel 
Alloy Steel
Φ30×50 Φ800×5000 0.3 20000 Normalizing;
Queching;
Tempering Annealing;
Quenching&High Temperature Tempering
Ring Φ75 ×Φ15×12 Φ5000 ×Φ4500×300 0.3 9000
Disc Φ90 ×20 Φ3500 ×100 0.5 10000
Block 100 ×100×100 1500 ×1500×1500 7.85 26000
Gear Ring Φ75 ×Φ15×12 Φ5000 ×Φ4500×300 0.3 9000
Hollow Bar Φ90 ×Φ49×133 Φ1000 ×Φ900×3000 4 12000
Other   Φ5000   30000

Company Profile

ZheJiang Xihu (West Lake) Dis.huang Wind Power Flange Manufacturing Co., Ltd. is located in HangZhouang County, HangZhou City, ZheJiang Province, the hometown of forging in China. Since 2007, it has been focusing on manufacturing and selling various steel flange forgings, and its products are exported to all over the country. More than 100 countries and regions around the world. HangZhouang’s complete forging processing industry chain and complete testing equipment support, so that we can almost meet the requirements of various forging products of customers.

1. The modern factory covers an area of more than 20,000 square meters, has more than 30 sets of forging processing and testing equipment, a three-dimensional inspection center, ISO9001:2015 factory system certification, TUV/PED 2014/68/EU pressure vessel manufacturing license, special equipment manufacturing certificate, Member of China Forging Association, member of ASTM International Organization, high-tech enterprise in HangZhouang County, etc.

2. Can produce flanges of various international and domestic standards and custom flanges with drawings: GB, American, ANSI, Japanese, JIS, German, DIN, British, BS, European, EN1092, Russian, GOST, etc.

3. Types of flanges that can be produced: weld neck flange, high neck flange, long high neck flange, threaded flange, loose flange, lap flange, blind flange, flat flange, looper Flanges, orifice flanges, wind power flanges, heat exchanger tube sheets, baffles, pressure vessel nozzles, connectors, etc.;

Forging types: various forging flanges, forging tubes, Tube Sheet, Tube bundle supporting plate, raffles, forging rings, forging rings, forging rods, forging shafts, forging cakes, thick-walled tubes, shafts, wheels, valve bodies, gears, nozzles, modules, oil cylinders, rings, various special-shaped forging, etc.;

Our company’s forging series products include
Industrial forgings for civil industries such as machine tool manufacturing, agricultural machinery, farm implement manufacturing and bearing industry;
Shaft segments such as main shaft and intermediate shaft for hydro-generators, forgings for thermal power plants such as rotors, impellers, and retaining ring main shafts;
Forgings for metallurgical machinery such as rolls and gear shafts; forgings for kettle ring, cylinder, cylinder, and axle forging machinery;
Flange series products include pressure vessel flanges, heat exchanger flanges, flat welding flanges, butt welding flanges, non-standard flanges, stainless steel flanges, etc.
Widely used in chemical, construction, water supply, drainage, petroleum, light and heavy industry, refrigeration, sanitation, plumbing, fire protection, electric power, aerospace, shipbuilding and other basic projects.

4. Basic size range of processed products as shown in the pictures below;

5. Quality inspection and inspection reports that can be issued by our products: according to the specific requirements of customers, we can issue certificates of conformity, non-destructive testing, 3.1 certificates, 3.2 certificates, mechanical properties, chemical composition, radiographic inspection, certificate of origin, etc.;

6. Standard exportation Package, plywood cases or pallets or iron frame.  

7. [Common materials]: Stainless steel: ASTM, A182, F304/304L, F316/316L, F316H, F310, F321, JB4728-2000, OCR18Ni10Ti, JB4728-2000, OCR17NI12Mo2, 2205, 2507, 2103, 904L, 254SMD, 304 , 316LN, 1CR13, 2cr13, 3cr13, 4cr13, 321, 302, W1813N, W2014N, W2018N, W2571N, P550, Cr18Mn18N and other forgings.

Heat-resistant steel: 12CrlMoVG, P11, P22, P91, P92, F92, InconeI740H, CCA617, Sanicro25 alloy and other forgings

Bearing steel: G20CrNiMoA, G2CrNi2MoA, G20Cr2Ni4, GCr15, GCr15SiMn, GCr15SiMo, GCr18Mo, M50, M50NiL, CSS-F42L, Cronidur30 and other forgings

Gear steel: 42CrMo, 20CrNi2Mo, 34CrNi3Mo, 40CrNiMo, 20CrMnMo, 35CrMo, 18CrNiMo7-6 and other forgings.

7. Industries involved: mining equipment: mining equipment, winch equipment, crushing equipment, grinding equipment, washing equipment, sintering equipment.

Petrochemical equipment: manholes and flanges of spherical storage tanks, various tube sheets required for heat exchangers, integrally forged cylinders (pressure vessels) of catalytic cracking reactors with butt welding flanges, cylinders used in hydrogenation reactors Section, the top cover, bottom cover, head, etc. required by the fertilizer equipment are all forgings.

Power machinery, diesel generators, engines, electric machinery;

Mechanical parts such as wind power, nuclear power, marine, weapons, aircraft, etc.;

In line with the enterprise spirit of “integrity, dedication, collaboration, innovation, and people-oriented”, the company has been deeply involved in the manufacturing industry with its advanced business philosophy, professional technical support, pragmatic work attitude and meticulous service, and has won the recognition of customers and Market reputation.

If you are interested in our company’s products and services, we look CHINAMFG to your online message or inquiries.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Ring Rolling Forging
Application: Machinery Parts
Material: Steel
Heat Treatment: Normalizing

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

How does the choice of materials impact the performance of slewing rings in different environments?

The choice of materials significantly impacts the performance of slewing rings in different environments. The selection of appropriate materials ensures the desired strength, durability, corrosion resistance, and overall reliability of the slewing rings. Here’s a detailed explanation of how the choice of materials impacts the performance of slewing rings in different environments:

  • Corrosion Resistance: Different environments may expose slewing rings to corrosive elements such as moisture, chemicals, or saltwater. Choosing materials with high corrosion resistance, such as stainless steel or corrosion-resistant alloys, helps protect the slewing rings from chemical reactions and rust formation. Corrosion-resistant materials ensure the longevity and reliability of slewing rings, especially in marine, offshore, or chemical industry applications.
  • Temperature Resistance: Environmental conditions, such as extreme temperatures or thermal cycling, can affect the performance of slewing rings. Materials that exhibit excellent temperature resistance, such as heat-treated steels or specialized alloys, are crucial in applications where slewing rings are exposed to high or low temperatures. These materials maintain their mechanical properties and dimensional stability, ensuring reliable performance even in demanding temperature environments.
  • Wear and Fatigue Resistance: In applications with high loads, repetitive movements, or abrasive environments, slewing rings may experience wear and fatigue. Choosing materials with high wear resistance, such as hardened steels or materials with specialized coatings, minimizes surface damage and extends the service life of the slewing rings. These materials can withstand the repetitive stresses and abrasive conditions, reducing the risk of premature failure.
  • Weight Considerations: In certain applications, weight is a critical factor. Slewing rings that are used in lightweight or mobile equipment may require materials that offer a balance between strength and weight. Lightweight materials like aluminum or high-strength composites can be suitable choices to reduce the overall weight of the slewing rings and improve the efficiency and maneuverability of the equipment.
  • Load Capacity: The choice of materials affects the load-carrying capacity of slewing rings. Materials with high tensile strength and fatigue resistance, such as specialized steels or alloys, enhance the load-bearing capabilities of the slewing rings. The selection of materials with appropriate mechanical properties ensures that the slewing rings can handle the required loads without deformation or failure.
  • Compatibility with Lubricants: Lubrication is essential for smooth operation and reduced friction in slewing rings. The choice of materials should consider their compatibility with the lubricants used in the specific environment. Certain materials may be more compatible with certain types of lubricants, ensuring optimal lubrication and minimizing wear and friction.
  • Electrical Conductivity: In applications where electrical conductivity is required, such as in certain industrial or robotic systems, materials with appropriate electrical conductivity properties may be necessary. Copper or specific alloys can be chosen to provide the desired electrical conductivity while maintaining the mechanical integrity of the slewing rings.

By selecting the appropriate materials based on the environmental conditions and specific application requirements, the performance and reliability of slewing rings can be optimized. Manufacturers and engineers consider factors such as corrosion resistance, temperature resistance, wear resistance, weight considerations, load capacity, lubricant compatibility, and electrical conductivity to determine the most suitable materials for slewing rings in different environments.

In what industries or scenarios are slewing rings commonly employed?

Slewing rings find extensive use in various industries and scenarios where controlled rotational movement and load-bearing capabilities are required. Here’s a detailed explanation of the industries and scenarios where slewing rings are commonly employed:

  • Construction and Heavy Machinery: Slewing rings are widely used in the construction industry for applications such as cranes, excavators, and concrete pumps. They enable the rotation of booms and arms, allowing for efficient material handling, precise positioning, and heavy load support.
  • Wind Energy: Slewing rings play a crucial role in wind turbines. They support the rotor and enable the yaw and pitch movements necessary to optimize wind capture and power generation. Slewing rings in wind turbines must handle substantial loads and operate reliably in harsh environmental conditions.
  • Industrial Automation: In industrial automation, slewing rings are employed in indexing tables, turntables, robotic arms, and packaging machinery. They enable precise and controlled rotation, facilitating automated processes, assembly lines, and material handling systems.
  • Transportation and Automotive: Slewing rings are commonly used in transportation and automotive applications, including vehicle cranes, truck-mounted cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They provide stable connections and controlled rotation, supporting tasks such as loading and unloading cargo or enabling safe access to elevated areas.
  • Marine and Offshore: Slewing rings are extensively employed in marine and offshore equipment, including ship cranes, davits, and rotating platforms on ships and offshore rigs. They withstand corrosive marine environments and heavy loads, enabling lifting operations and controlled rotation in challenging conditions.
  • Aerospace and Defense: Slewing rings are vital components in aerospace and defense applications, such as radar systems, missile launchers, and satellite antennas. They facilitate precise rotational movements required for tracking, targeting, and communication systems, and must meet stringent requirements for reliability and precision.
  • Medical and Rehabilitation: Slewing rings are used in medical and rehabilitation equipment like patient lifts, adjustable beds, and examination tables. They enable smooth and controlled movement, aiding in patient transfers, positioning, and providing comfort and support.

These are just a few examples of the industries and scenarios where slewing rings are commonly employed. Their versatility, load-bearing capacity, and ability to facilitate controlled rotation make them essential components in a wide range of applications across industries such as construction, renewable energy, industrial automation, transportation, marine, aerospace, and healthcare.

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

China Custom Stainless Steel Ring Forgings Loose Flange Backing Rings China  China Custom Stainless Steel Ring Forgings Loose Flange Backing Rings China
editor by Dream 2024-04-24